Case 1: PGx-Design in Phase I based on In vitro Data

© European Medicines Agency, 2009. Reproduction is authorised provided the source is acknowledged.

Objective of Session

Understanding the pre-clinical drivers that determine the incorporation of PGx in phase I studies.

Format of Session

- This workshop is designing the phase I programme for a NCE
- When phase I studies are being designed, information from pre-clinical studies that is relevant to PK issues (e.g. *in vitro* metabolism, metabolites in pre-clinical species etc.) is available.
- Data from transporters may also be available Workshop task: Recommendations on the most appropriate phase I strategy for different scenarios

PGx Options in Phase I

- Depending on the in vitro/in vivo pre-clinical data, there are a number of options for PGx in phase I studies:
 - Do nothing
 - Collect DNA for future analysis should phenotypes (e.g. PK outliers) emerge that warrant PGx study
 - Genotype participants in phase I studies at specific genes
 - Enriched study in participants with defined genotype as an entry criterion
 - Exclude particular genotype groups (e.g. poor metabolizers) from initial - or all - phase I studies

Key Points to Consider

• CHMP Reflection Paper on PG in PK Evaluation:

If human *in vitro* data suggest major involvement of a protein known to be subject to functionally important genetic polymorphism, inclusion of genotyping directed to the candidate gene is warranted in early phase I studies.

Involvement of transporters ... presently the knowledge of this field is not mature enough for early genotyping to be required only on the basis of *in vitro* data.

It is recommended that samples from early phase I studies are stored to allow retrospective analysis ...

- *In vitro* metabolism data are not necessarily predictive of human drug metabolism, quantitatively or even qualitatively
- For many ADME genes, the link between genotype and phenotype is unclear
- Generating genetic data that is not used for progressing drug development is inappropriate

Compound under Development

- The company is developing a new chemical entity (drug A) for a serious, chronic disease, Diabetes Mellitus Type 2
- Drug A shows no major toxicities in animals at exposures expected to provide >80% receptor occupancy.
- The limiting toxicity is elevated body temperature in dogs.
- Extrapolating to human exposure, it is expected that there will be a safety margin of ~10x at a therapeutic dose.

Core Case Summary

Drug A for Diabetes type 2 (2nd in class) has:

Predicted Therapeutic Margin	narrow
Proposed Therapeutic Level	need high receptor occupancy
Exposure:Response Curve	unknown location on curve
In-vitro ADME Phenotyping	see data
Observed Clinical Exposures	see data

Core Metabolism Data Set

- The data below show results from a in-vitro ADME phenotype study
 - Compound is incubated with human liver microsomes
 - Preclinical Data indicates Oxidative Metabolism is the major clearance route for Drug A
 - Effect of CYP isoform inhibitors is determined
- For the core data set and each variation, the CYP sub-type inhibition is given, plus other relevant comments
- For each scenario, the preferred PGx approach in phase I is to be identified

Discussion to Design Phase 1 Programme

Dataset	Do Nothing	Collect DNA only	Prospective Phase I Genotyping	Specific Enriched Study	Exclude e.g. PMs	Other
Core set: CYP2D6 signal						
Variation 1: CYP3A4 signal						
Variation 2: CYP2C8 signal						
Variation 3: No metabolites						
Variation 4: low CYP2D6 signal						
OATP Transporter Signal						

Core Data Set – CYP2D6 Metabolism

• Oxidised metabolites seen in pre-clinical species

Inhibitor	Target CYP Isoform	CLint (µL/min/mg	% Inhibition
		protein)	
Control		12.5	-
Furafylline	1A2	12.9	0
Sulfaphenoxazole	2C9	11.9	4
Omeprazole	2C19	11.7	6
Quinidine	2D6	6.9	45
Ketoconazole	3A4/5	10.6	15
Trimethoprim	2C8	11.5	8

Variation 1 – CYP3A4/5 Metabolism

• As per core set, but metabolism is via CYP3A4

Inhibitor	Target CYP Isoform	CLint (µL/min/mg	% Inhibition
		protein)	
Control		12.5	-
Furafylline	1A2	12.9	0
Sulfaphenoxazole	2C9	11.9	4
Omeprazole	2C19	11.7	6
Quinidine	2D6	10.6	15
Ketoconazole	3A4/5	6.9	45
Trimethoprim	2C8	11.5	8

Variation 2 – CYP2C8 Metabolism

• As per core set, but metabolism is via 2C8

Inhibitor	Target CYP Isoform	CLint (µL/min/mg	% Inhibition
		protein)	
Control		12.5	-
Furafylline	1A2	12.9	0
Sulfaphenoxazole	2C9	11.9	4
Omeprazole	2C19	11.7	6
Quinidine	2D6	10.6	15
Ketoconazole	3A4/5	10.5	15
Trimethoprim	2C8	5.6	55

Variation 3 – No Oxidised Metabolites

• As per core dataset, but no oxidative metabolites seen in pre-clinical species – compound excreted unchanged in

Taeces	Target CYP Isoform	CLint (µL/min/mg	% Inhibition
		protein)	
Control		12.5	-
Furafylline	1A2	12.9	0
Sulfaphenoxazole	2C9	11.9	4
Omeprazole	2C19	11.7	6
Quinidine	2D6	6.9	45
Ketoconazole	3A4/5	10.6	15
Trimethoprim	2C8	11.5	8

Variation 4 – Reduced CYP2D6 Metabolism

• As per core set, except that CYP2D6 specific metabolism is 22% (as opposed to 40%).

Inhibitor	Target CYP Isoform	CLint (µL/min/mg protein)	% Inhibition
Control		12.5	-
Furafylline	1A2	12.9	0
Sulfaphenoxazole	2C9	11.9	4
Omeprazole	2C19	11.7	6
Quinidine	2D6	9.8	22
Ketoconazole	3A4/5	11.8	5
Trimethoprim	2C8	11.5	8

Transporter Studies

- Increasingly, transporters implicated in drug disposition, efficacy and safety
- Compound A (target organ liver) tested for uptake in cells transfected with human OATP receptors, including known polymorphisms
 - Data for OATP sub-types expressed as rate of uptake into transfected cells
 - Data for OATP1B1 variants expressed as percentage activity of 'wild-type' transporter

OATP Transport Data

OATP Sub- type	Rate of Uptake	OATP1B1 Variant	Frequency	Rate of Uptake
Vehicle	0.8	*1a	0.56	12.5
1A2	4.5	*1b	0.26	10.2
1B1	12.5	*5	0.02	1.5
1B3	6.2	*15	0.16	4.5
2B1	3.5			

- The data show significant uptake by OATP1B1, which is greatly reduced in known human variants
- Some uptake is seen with other OATP subtypes

Discussion to Design Phase 1 Programme

Dataset	Do Nothing	Collect DNA only	Prospectiv e Phase I Genotypin g	Specific Enriched Study	Exclude e.g. PMs	Other
Core set:						
CYP2D6 signal						
Variation 1:						
CYP3A4 signal						
Variation 2:						
CYP2C8 signal						
Variation 3:						
No metabolites						
Variation 4: low						
CYP2D6 signal						
ΟΑΤΡ						
Transporter						
Signal						