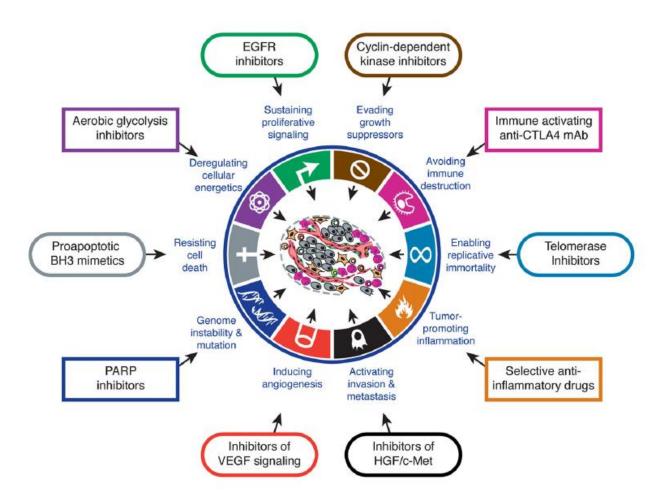


London, United Kingdom

The challenges of the different stakeholders


An academic perspective

Heinz Zwierzina, M.D.

CDDF

Early Clinical Trial Unit
Innsbruck Medical University

The challenge (level 1)

D. Hanahan and R. A. Weinberg, Cell 144:646-654, 2011

The challenge (level 2)

Evolving immunotherapy approaches

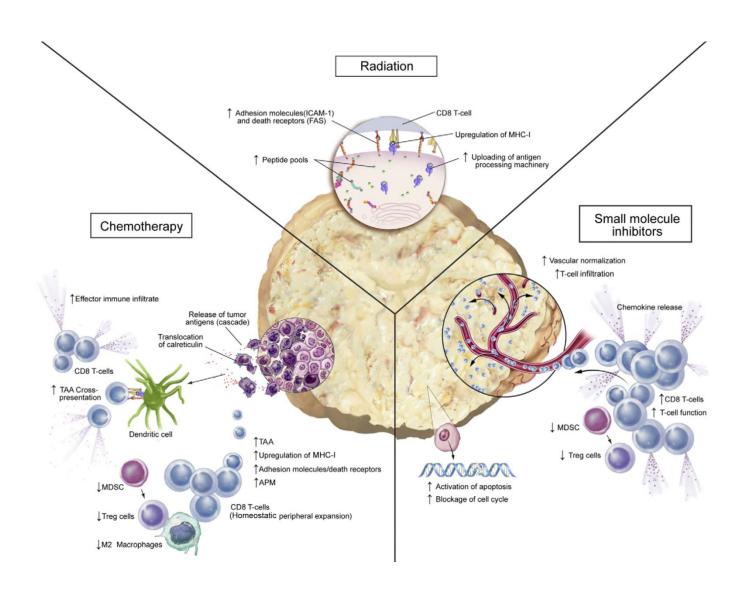
Enhancing adaptive immunity

- NK-cell activation*
- ADCC*
- CD137*
- IL-21
- IL-15
- CD40*
- Toll-like receptors*
- APC modulation

Immune priming

- Multiple vaccine approaches
- Use chemotherapy/ radiotherapy to prime
- Adoptive immunotherapy approaches
- Toll-like receptors*

Immunosuppressive microenvironment


- IDO*
- TGFB*
- IL-10
- *Target for therapeutic modulation

T-cell modulation

- CTLA-4*
- PD1 pathway*
- Lag 3*
- CD137*
- CD53/OX44*
- OX40/L*
- CD40/L
- Tregs*
- Adoptive immunotherapy approaches

Finn OJ. N Engl J Med. 2008;358:2704-15 Spagnoli GC et al. Curr Opin Drug Dev 2010;13:184-192

The challenge (level 3): combination therapies

London, United Kingdom

The challenges for the different stakeholders

- individualized approach ("molecular phenotyping")

no more blockbusters

versus

- subgroup analysis ("HER-2 expression")

(still) potential for blockbusters

CHALLENGES FOR THE APPROVAL OF ANTI-CANCER IMMUNOTHERAPEUTIC DRUGS

4th-5th February 2016 London, United Kingdom

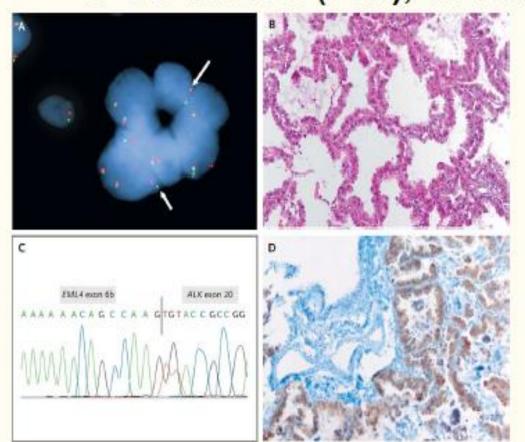
Molecular phenotyping

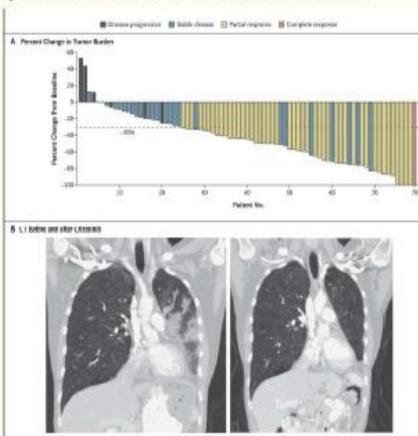
4th-5th February 2016 London, United Kingdom

Individualized therapy: We deal with a huge variety of malignant diseases

- each is less common than cancer defined by histology alone
- each likely to benefit from an individual approach

However:


- redundancy of all biological networks
 - resistance mechanisms
- tumor heterogeneity (intra- / intertumoral, over time)


Will a completely tailored approach ever work?

Crizotinib in metastatic NSCLC with ALK rearrangement

Incidence: 4-7% (mainly AdenoCa in nonsmokers)

n=82: RR 57% (1CR), SD 33%, 6-mths-PFS-Rate 72%

ONCO-T-PROFILING

Status: Nov 27, 2014*

- Collaborative project
- 100 patients with solid tumours within 18 months ECOG status 0-2, life expectancy > 3 months
 96 patients included after 14 months
- Tumour tissue available at respective pathology department
- Informed consent
- Re-biopsy when possible
- Molecular profiling by Caris Life Sciences

ratient (Diagnosis) Therapy according to typing wian	Patient (Diagnosis)	Therapy according to typing	Marker
--	---------------------	-----------------------------	--------

Patient 1 (CRC) Nab-paclitaxel + gemcitabine SPARC, RRM1

Patient 2 (CRC) Doxorubicin TOP2A

Patient 3 (breast) Nab-paclitaxel SPARC, PGP

Patient 4 (sarcoma) Paclitaxel + gemcitabine PGP, TOP2A, TUBB3

Patient 5 (sarcoma) Gemcitabine PGP, TUBB3, TL3

Patient 6 (endometrial) Lip. doxorubicin TOP2A, PGP

Patient 7 (pancreatic) Regorafenib c-myc

Patient 8 (SCLC) Irinotecan TOPO1

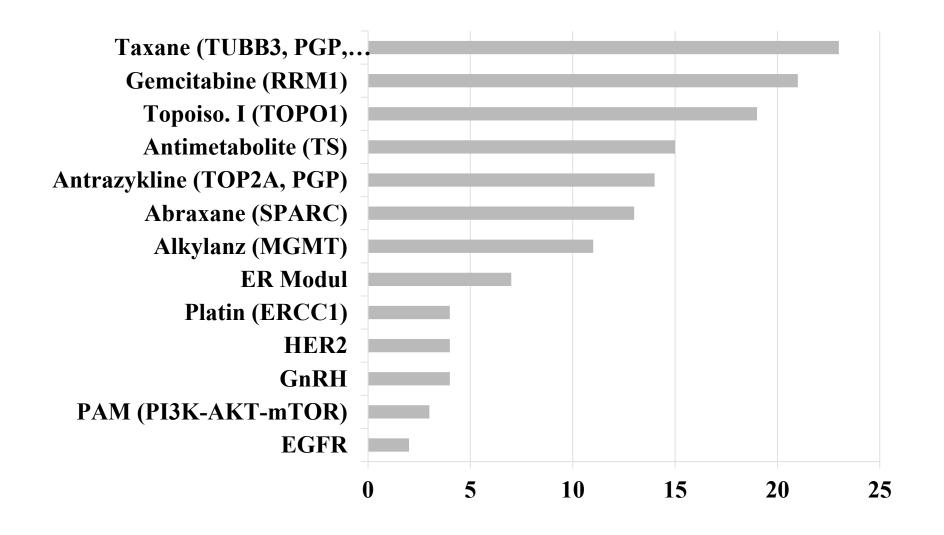
Patient 9 (NET) Topotecan TOPO1

Patient 10 (breast) Exemestan + everolimus PAM, ER

Patient 11 (NSCLC) Gemcitabine RRM1

TOP2A, PGP, TLE3, Patient 12 (gastric) Epirubicin + docetaxel TUBB3

Patient 13 (CRC) Regorafenib KRAS


Patient 14 (breast) Exemestan + everolimus PAM, ER

Patient 15 (breast) Exemestan + everolimus PAM, ER

Patient 16 (cervical) Lip. doxorubicin TOP2A, PGP

Potentially active drugs according to molecular typing

- Male, 64a
- Soft tissue sarcoma (metastatic)
- Initial diagnosis 10/2009
- Previous therapies: doxorubicin, trabectidin, pazopanib, ifosfamide
- ONCO-T-Profiling: 04/15 → TUBB3 +, RRM1 -
- → Start paclitaxel + gemcitabine: 22.05.2015
- Interim analysis 01/16: stable disease (SD)

London, United Kingdom

Molecular Typing – a word of caution

- Science behind is impressive
- We are learning a lot more about tumour biology
- We add a further level for complexity
- Challenge remains how to apply this technology in clinical trials (except for frequent genetic alterations)
- In most cases we come back to chemotherapy
- There are patients who profit
- Frequently the benefit for an individual patient is hard to prove

CHALLENGES FOR THE APPROVAL OF ANTI-CANCER IMMUNOTHERAPEUTIC DRUGS

4th-5th February 2016 London, United Kingdom

IMMUNOTHERAPY

- First glance BIG difference
 - A potentially CURATIVE treatment in the metastatic setting (!)
- Second glance:
 - There are primary and secondary resistance mechanisms for ALL anticancer drugs!
 - Challenge is to define the (non-) responders

Individualized therapy (molecular phenotyping) versus subgroup analysis (e.g. "PDL-1 expression")

London, United Kingdom

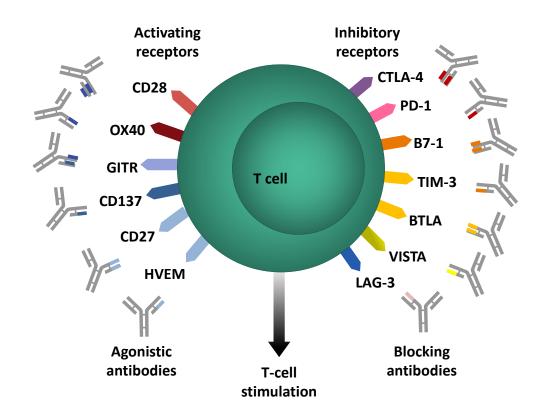
The heterogeneity issue

- Fundamental question of personalized medicine
- Does the driver of lesion X really represent the driver of tissue Y?
- Is the immune system homogenous over the whole tumor load (e.g. PD L1 expression)
- Image guided biopsies from large tumors may not be representative for the entire tumor

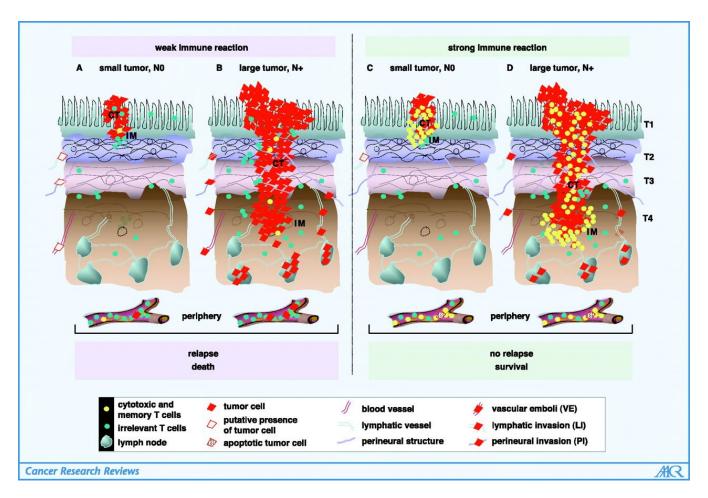
Peripheral blood markers may hold the potential to be the solution?

CHALLENGES FOR THE APPROVAL OF ANTI-CANCER IMMUNOTHERAPEUTIC DRUGS

4th-5th February 2016 London, United Kingdom



Subgroup analysis – search for biomarkers


4th-5th February 2016 London, United Kingdom

The "checkpoint modifier" pipeline is full!

Immune Control of Cancer T Cell Infiltration

Tumor infiltrating immune cells after treatment with anti-CTLA-4 antibodies

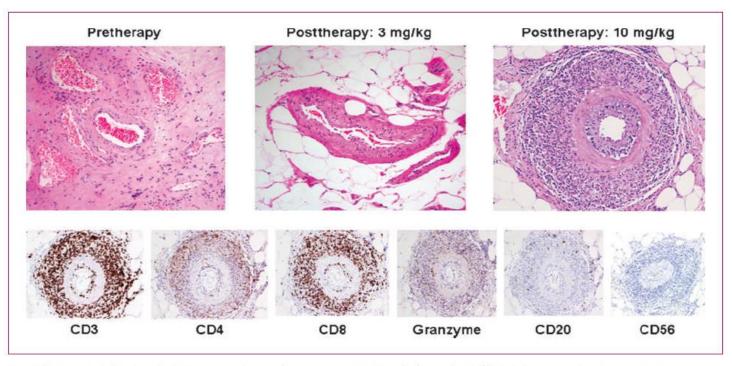
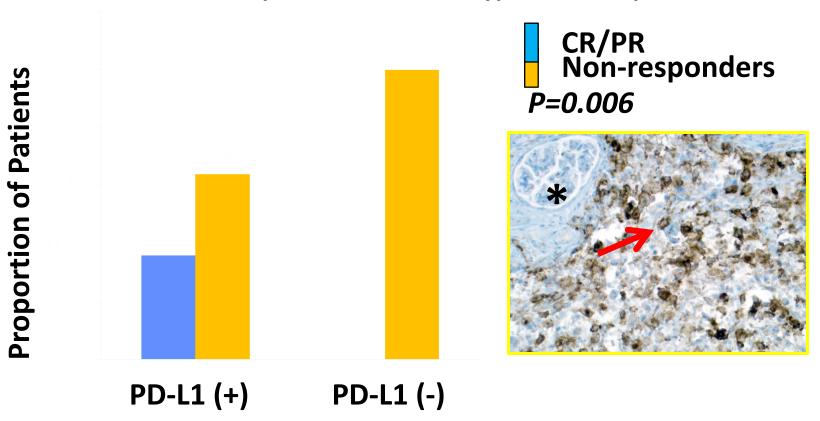


Fig. 2. Perivascular infiltration of cells into tumor tissues after treatment with 10 mg/kg/dose of anti–CTLA-4. Representative pictures showing an absence of perivascular infiltration of cells in untreated tumor tissues (0 of 11) and tumor tissues obtained from patients treated with 3 mg/kg/dose of anti–CTLA-4 (0 of 6) as compared with the presence of perivascular infiltration noted in tumor tissues obtained from patients treated with anti–CTLA-4 at 10 mg/kg/dose (2 of 5; top). Immunohistochemistry revealed that the infiltrating cells were positive for CD3, CD8, CD4, and granzyme, but were predominantly negative for CD20 and CD56 (bottom).

Increase in TILs at Week 4 from Baseline Associated with Clinical Activity of Ipilimumab


Biomarker	# with TILS increased from baseline (N=27)	P-value	Odds Ratio in favor of clinical benefit (95% CI)
Benefit group	4/7 (57%)	0.005	13.27 (1.09, 161.43)
Non-benefit group	2/20 (10%)	3.003	

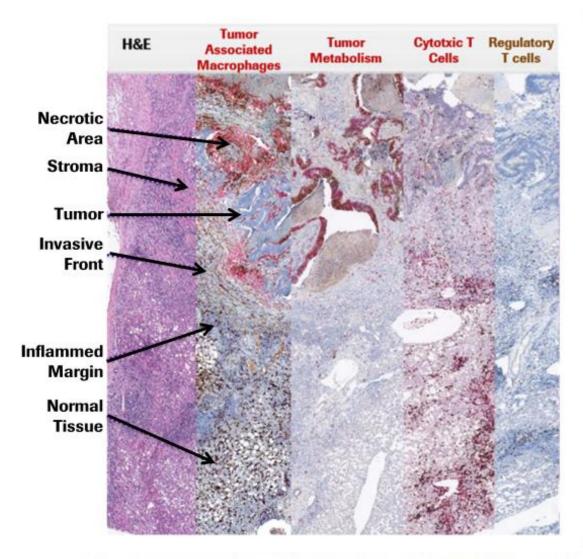
- Not all samples were evaluable for every parameter, and not all patients provided data for all time points
- P values uncorrected for multiple testing

TILs at baseline were not correlated with benefit

Responsiveness was associated with PD-L1 on tumor cell surface

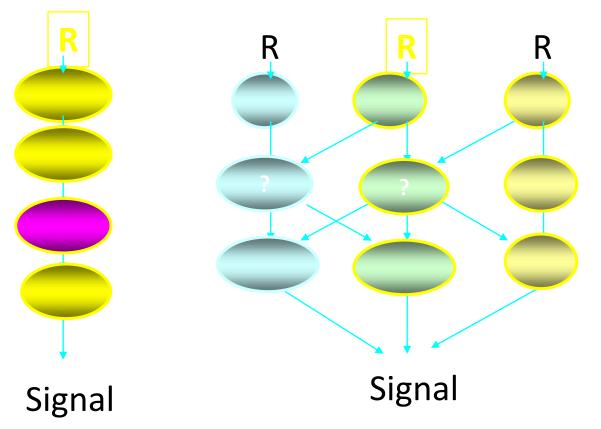
PD-L1 expression by IHC in 61 pretreatment tumor biopsies across tumor types from 42 pts

Patient samples: 18 MEL,10 NSCLC, 7 CRC, 5 RCC, 2 CRPC

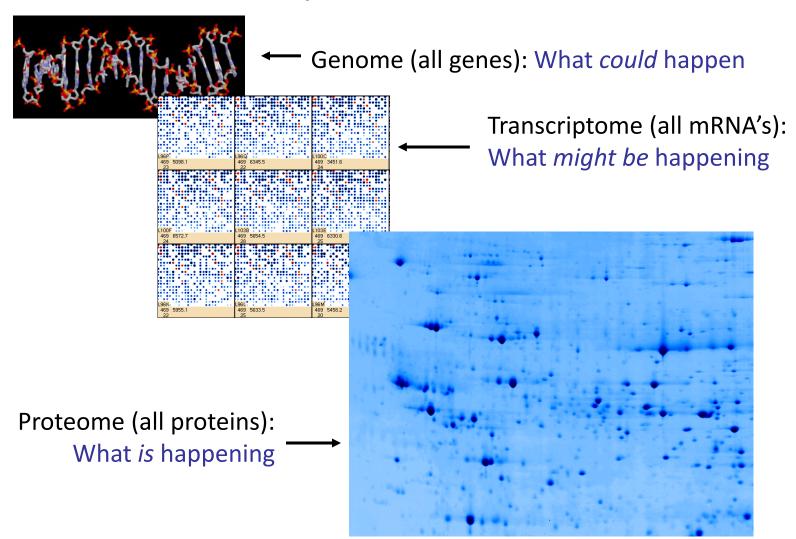

Topalian et al NEJM, 2012

Combining Durvalumab and Tremelimumab:

Clinical activity from Phase 1b dose escalation in NSCLC

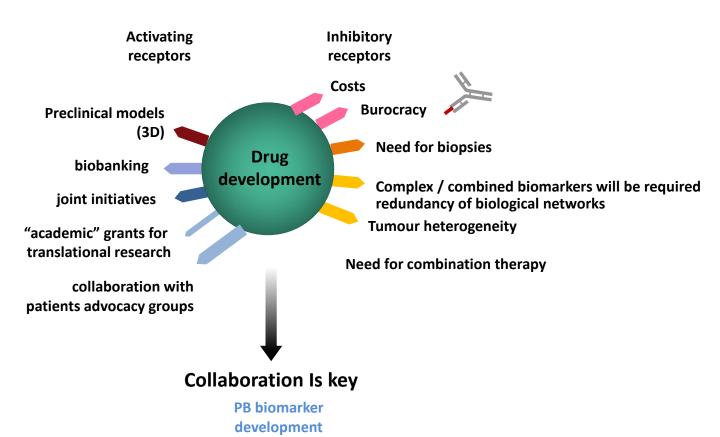

	D10–20 q4/2w T1		
PD-L1 status	n/N	95% CI	
All patients	11/39 (28%)	15–45	
PD-L1⁺ ≥25%	3/9 (33%)	8–70	
PD-L1 ⁻ <25%	6/23 (26%)	10–48	
All 2L patients	7/16 (44%)	20–70	

Tumor tissue analysis reveals a complex tumor micro-environment (TME) landscape



How to Identify the "Relevant" Biomarker?

Dream: Single Signal Approach Reality: A lot of redundancy


Roles of Genome / Epigenome, Transcriptome, Proteome

4th-5th February 2016 London, United Kingdom

The "checkpoint modifier" pipeline for drug development: Is the pipeline full?

4th-5th February 2016 London, United Kingdom

Biomarkers - the future

- Given the shortcomings of single biomarkers and the complexity of cancer biology, multiple / composite biomarkers will be increasingly relied on
- Peripheral blood markers may (only) be "surrogate markers"
- Serum / blood markers may help to overcome the logistic challenges of taking repeated biopsies
- Without the development of biomarkers that define subgroups of patients that may/may not respond
 - Treat "wrong" patients and cause unneccessary side effects (ethical aspect)
 - our health care system will be in serious troubles (HTA issue)

CHALLENGES FOR THE APPROVAL OF ANTI-CANCER IMMUNOTHERAPEUTIC DRUGS

CDDF

4th-5th February 2016 London, United Kingdom

The way ahead

- Molecular phenotyping will play a role for well-defined patient population
 - Biomarker development in the peripheral blood could be a joint project of all stakeholders

"collaboration is key"