CHALLENGES FOR THE APPROVAL OF ANTI-CANCER IMMUNOTHERAPEUTIC DRUGS

Challenges in evaluating relative effectiveness

Mira Pavlovic

MDT Services mira.pavlovic@mdt-services.eu

EMA-CDDF JOINT MEETING London, February 4-5, 2016

Preliminary statements

- No conflict of interest
- Bias (dermatologist)
- Reviewed documentation:
 - Published literature (melanoma, NSCLC)
 - Relevant EPARs
 - Publicly available HTA assessments

Context (1) Targeted therapies

- Recent advances in molecular biology and genomics
 - Molecular heterogeneity of tumours
 - Identification of key molecular drivers of tumour oncogenesis and mechanisms of tumour resistance
 - shift in anticancer therapy strategies from "one-size-fitsall" approach to an individualized approach to therapy
 - development of new therapies targeted towards identified functional genetic mutations (melanoma, NSCLC, other tumours)
 - MAPK/MEK pathway activation and activating mutations in BRAF development of BRAF and MEK inhibitors given as monotherapy or in combination to treat melanoma patients

Drug development and assessment Targeted therapies

- Enriched designs (patients with mutation)
 - Superiority versus reference treatment
 - Targeted monotherapy versus chemotherapy
 - Combination of targeted therapies (e.g. anti BRAF + anti MEK) versus monotherapy (anti BRAF) in melanoma
- Results (melanoma):
 - high RR for targeted therapy
 - 50% monotherapy, 70% combo vs chemotherapy (5%)
 - PFS:
 - 12 months (combo), 6-7 months (mono)(resistance),
 - OS (2y)
 - D+T=25,6m vs V=18m, HR=0,66, p<0,001
- Acceptable toxicity, less skin side effects with combo

Targeted therapies

HTA assessments

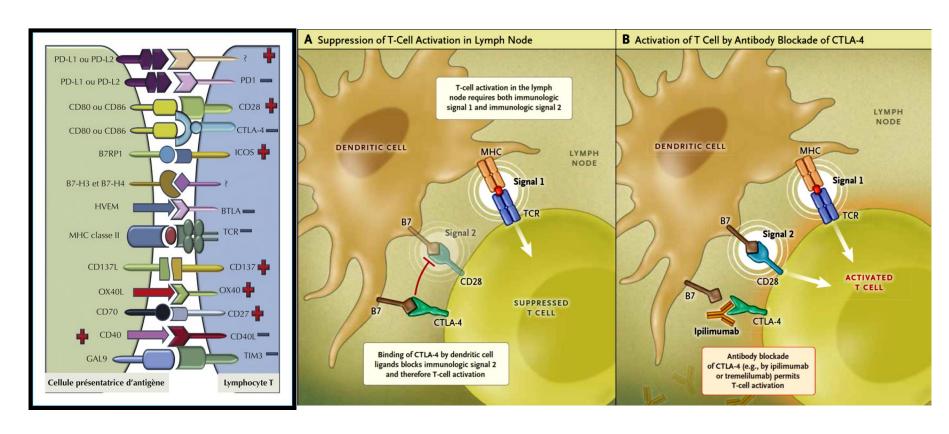
Criticisms (HTA bodies)

- No double blind
 - Difficult if investigator's best choice as comparator
- Added benefit assessment based on mortality (OS), morbidity and HRQoL
 - OS data necessary to support added benefit
 - Less added benefit of only PFS data (some HTA agencies)
 - Data on other patient-relevant endpoints necessary (pain, insomnia, appetite loss, diarrhoea, fatigue...)
- Interim analysis not recommended, especially on PFS

Targeted therapies HTA Challenges

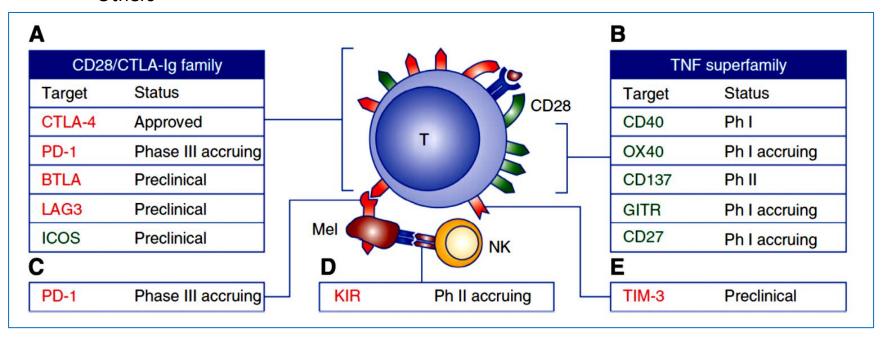
No real challenge

- Binary reasoning (mutation or +)
- Companion tests validated
- EMA and HTA guidelines on co-development drugbiomarker apply
- Study designs: enriched (in most cases)
- Superiority to reference treatment
- Easy to understand treatment effectiveness and safety profile
 - RR, PFS, OS



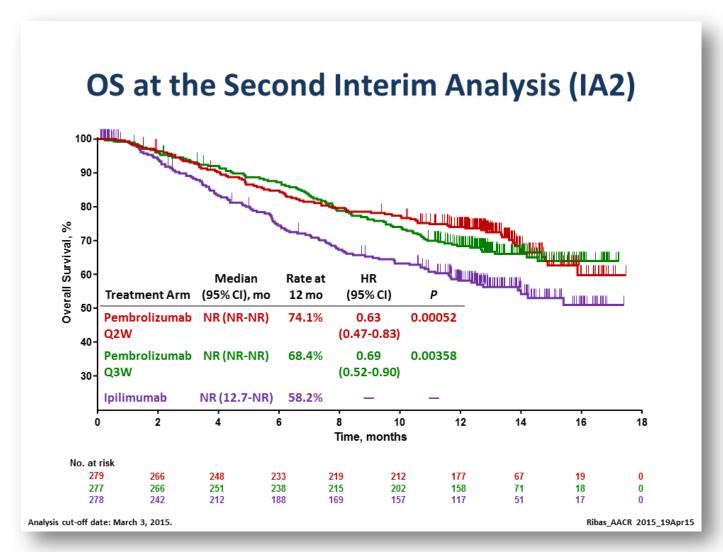
Context (2) Immunotherapies

- Better understanding of anti-tumour immunity (today):
 - Negative costimulatory molecules or "checkpoints" (CTLA-4, PD-1)
 - PD-1 receptor and its ligands PD-L1 and PD-L2
 - expressed on activated T-cells (CD8, CD4), activated B-cells, natural killer cells, APC and tumour cells in response to inflammatory stimuli
 - negative regulators of T-cell activity involved in the control of Tcell immune responses
 - prevent immune-mediated rejection of the tumour
 - Development of treatments targeting the PD-1/PD-L1,2 axis


Better understanding of anti-tumour immunity

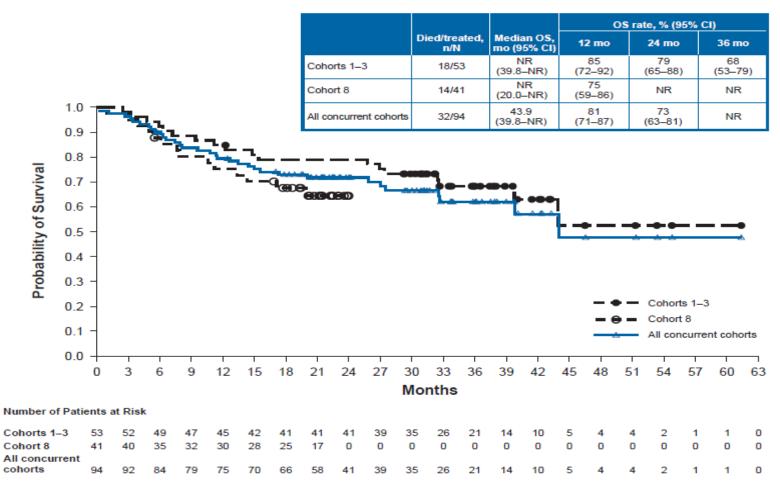
Better understanding of anti-tumour immunity

- Products in development:
 - New inhibitors of molecules blocking T cell activation
 - New agonists of T cells co-activators
 - Others



Immunotherapies (melanoma, lung)

- Study design: mostly unselected designs
 - PD-1 role as predictive marker unclear
 - Subgroup analysis done (PD-1+, PD-1 -)
- Results
 - Melanoma (regardless PD-1 expression):
 - Monotherapy:
 - Rather low RR
 - Long duration of response
 - Long OS for some patients
 - Combination therapy (e.g. ipilimumab+nivolumab):
 - high RR (>50% CR+PR, regression of bulky disease), long OS, high toxicity
 - NSCLC:
 - Nivolumab (squamous NSCLC 2nd line vs docetaxel, regardless PD-1 expression): OS 9,2m vs 6m (42% vs 24% at 1y)
 - Pembrolizumab:
 - study ongoing in PD-1+ patients (50% cut off)

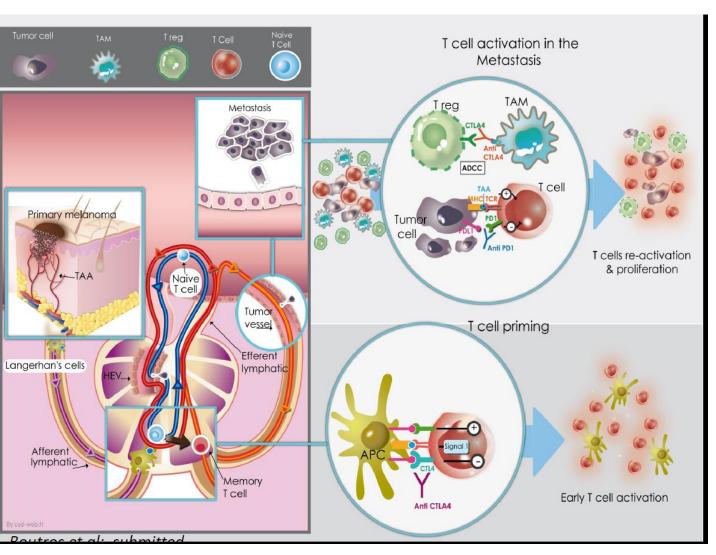

Pembrolizumab vs ipilimumab (melanoma)

Multi-cohort dose ranges

(ipilimumab + nivolumab)(melanoma)

CI = confidence interval; mo = months; NR = not reached

Immunotherapies Challenges


At all steps of drug development (melanoma, NSCLC)

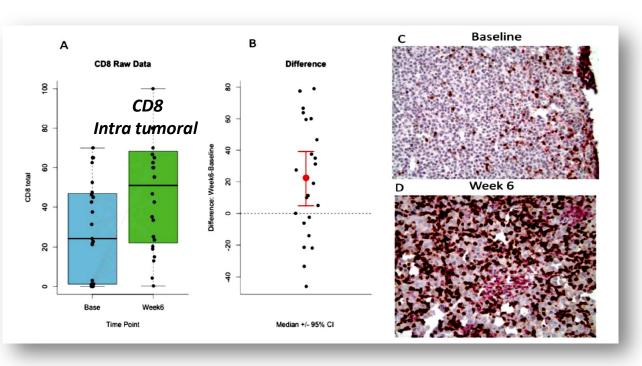
- Conceptual challenge
 - tumour immuno-microenvironment
- PD-L1 expression
- Choice of dose(s)
 - no clear relationship with anti-tumour activity and toxicity
- Study design
 - Unselected or enriched?
- Assessment of response to treatment
 - Pseudo-progression (tumour infiltration by T cells)
 - Cross-over
 - Absence of OS data for very recent comparators

Immunotherapies: challenges

Tumour immuno-microenvironment

Not fully understood

Differs within and between tumour lesions


Dynamic interactions between APC, tumour cells, T cells, and other co-stimulatory and coinhibitory molecules

Additional variables (e.g. intra-tumour CD8+ T cells)

Immunotherapies: challenges

Tumour immuno-microenvironment

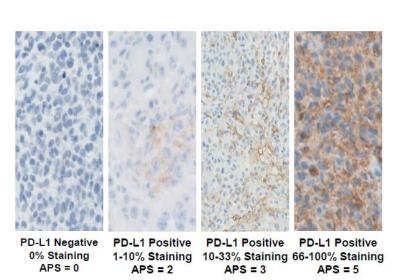
Ipilimumab: Cancer Immunol Immunother **2014:** DOI 10.1007/ \$00262-014-1545-8

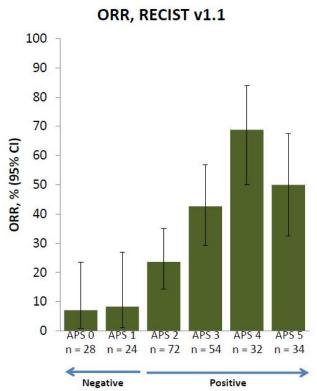
See also:

The Distribution of Cutaneous Metastases Correlates With Local Immunologic Milieu

(JAAD, January 9, 2016 Epub Ahead of Print): low proportion of CD8+ T cells and high density of regulatory T cells in metastases as compared to normal skin

Immunotherapies: challenges PD-L1


- PD-L1 expression
 - Staining performed in variety of biopsy samples before and during treatment
 - Various levels of expression in different tumour sites (same patient) and at different time points
 - No validated assay
 - Different IHC expression cut off levels used: positive if 1, 5, 10, 50% cells stain
 - 1% cells express PD-L1 by IHC (pembro MM, NSCLC),
 - 5% cells express PD-L1 by IHC (nivo NSCLC)
 - 50% cells express PD-L1 by IHC (pembro-NSCLC, ongoing trials)
- No clear correlation with response to treatment in melanoma
- NSCLC: two drugs, two different developments
 - nivolumab overall population
 - pembrolizumab: PD-L1 positive patients (50% cut off)
- It would be interesting to review efficacy/effectiveness data by using different (relevant?) cut-offs for PD-1 expression



Immunotherapies: challenges What is relevant cut-off? 1%? <10%? 10-33%? 33-66%? >66%?

PD-L1 Expression and Relationship With Response

- Among first 411 patients enrolled, 67% evaluable for PD-L1 status
- Correlation between PD-L1 expression and ORR (P < 0.0001)

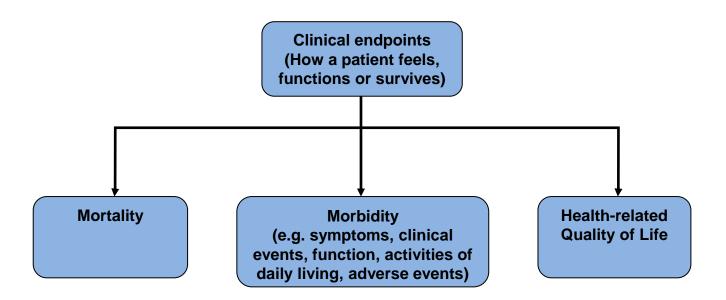
Immunotherapies: challenges Choice of dose

Pembrolizumab:

- No MTD (maximum tolerated dose)
- No clear correlation between dose, efficacy and toxicities
- Switch from traditional dose escalation design (N=30-50 patients) to parallel cohorts design (multiple dosage at the same time)(Keynote 0001)
- Large phase I trials with long term follow up (expansion cohorts design (N=655)
 - enables to explore both dosage and activity
- Dose uncertainty remains
 - Regulatory challenge

Immunotherapies: challenges Assessment of response to treatment

- Pseudo-progression
 - tumour infiltration by T cells
- Wait up to 6 months to assess patient's true response
 - Adapt RECIST rules?
- When does patient really progress?
 - When to allow for cross-over?
 - In clinical practice, physicians wait to be sure that patient progresses to change treatment
- Absence of OS data for recent comparators


REA- Assessment of added benefit

- Added clinical benefit of a new drug is assessed:
 - in adequate patient population (population granted MA or more restricted)
 - in comparison to an adequate comparator (defined by HTA bodies)
 - on relevant clinical endpoints:
 - Primary endpoint (final patient-relevant endpoint or acceptable surrogate)
 - Other endpoints considered relevant for the disease and aim of treatment

REA- Patient relevant endpoints Conceptual framework

 Clinical endpoints relevant to patients: death, pain (symptoms), disability, effects of the disease or its treatments on activities of daily living and quality of life

Immunotherapies REA – data requirements

OS data requested to support added benefit

- PFS not considered adequate
- Lower added benefit of only PFS data
- Data on other patient-relevant endpoints and HRQoL recommended

OS is not the only relevant endpoint

- speed of action, response rate, duration of response, duration of treatment, side effects profile, effectiveness in relevant subpopulations
- REA should support clinical practice guidelines:
 - data to support potential place of the product in the treatment strategy within the same line of treatment needed:
 - slowly progressing vs fast progressing patients, comparison of different treatment strategies, sequential regimens?

Immunotherapies REA – data requirements ctd

- Interim analysis not recommended
 - especially on PFS
 - also on OS whenever possible (mature OS data requested)
- Comparison with relevant comparators (defined by HTA bodies)
 - Choice of comparator depends on pre-treatment (if any) and tumour mutation(s)
 - No added benefit if inadequate comparator (exceptions)

Targeted therapies – REA Added benefit (HAS)

Product	disease	OS gain (m)	ASMR (HAS)
Kadcyla	Breast K	5,8	2
Zelboraf	Melanoma	1,5 – 3,6	3
Tafinlar/Mekinist	Melanoma	NR (1y), 7 (2y)	3
Opdivo	Melanoma	NR (1y)	3
Keytruda	Melanoma		
Yervoy	Melanoma	3,6	4*
Tafinlar	Melanoma	NS	5

Adequate study design, comparators, endpoints

IQWIG:

OPDIVO: considerable benefit (M) and minor benefit (W) in naive patients KEYTRUDA: considerable benefit in pretreated patients and minor benefit in naïve BRAF neg patients

Tafinlar/Mekinist: major benefit in women, non-quantifiable benefit in men BRAF+

^{*}Inadequate comparator

Cancer immunotherapeutic drugs Challenges in evaluating relative effectiveness CONCLUSION

Challenges:

more academic and regulatory then HTA

HTA challenges to assess added clinical benefit:

- Adequate patient population
 - Difficult multiple markers
 - In practice, no further restriction based on PD-1 expression
- Approved dosage
 - Use of non-authorised dosage increases uncertainty
- Adequate comparator
- Relevant clinical endpoints:
 - OS of course
 - Other relevant information
 - Place of the product in the therapeutic strategy
 - Treatment after progression
 - Possibility/success of subsequent therapies
- Cost-effectiveness (combination therapies)

THANK YOU

