The changing diagnostic criteria for Alzheimer’s disease – regulatory challenges

Dr. Marion Haberkamp, MD
Senior clinical assessor Division of Neurology and Psychiatry, BfArM
November 24, 2014
Disclaimer

• No CoI

• The content of this talk is my own and refers to the Discussion paper on the clinical investigation of medicines for the treatment of Alzheimer’s disease and other dementias (EMA/CHMP/539931/2014; 23 October 2014).

• All information discussed is in the discussion paper or publically available.
Outline

• Patient characteristics and selection of population
• Assessment of therapeutic efficacy
 • Symptomatic improvement
 • Disease modifying effects
• Design features
Defining populations

• AD diagnostic criteria
 – NIA-AA/IWG guidelines: clinicobiological entity
 – ICD 10, DSM 5 (major and mild neurocognitive disorder)
 – Consensus for research purposes and trial enrichment:
 Core clinical diagnosis + biomarkers
 – Disease continuum

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>prodromal/MCI</th>
<th>mild</th>
<th>moderate</th>
<th>severe AD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MMSE 21-26</td>
<td>10-20</td>
<td>≤ 9</td>
</tr>
</tbody>
</table>
Comparison IWG and NIA-AA criteria for clinical diagnosis of Alzheimer’s disease (Morris 2014)

<table>
<thead>
<tr>
<th>Similarities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorporate biomarkers for AD into the diagnostic process</td>
</tr>
<tr>
<td>Move towards an aetiologcal diagnosis for MCI</td>
</tr>
<tr>
<td>‘Prodromal AD’ (IWG)</td>
</tr>
<tr>
<td>‘MCI due to AD’ (NIA-AA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWG</td>
</tr>
<tr>
<td>‘AD’ refers only to symptomatic stage</td>
</tr>
<tr>
<td>Replace ‘MCI’ with ‘Prodromal AD’</td>
</tr>
<tr>
<td>Requires objective impairment in memory</td>
</tr>
<tr>
<td>Biomarker abnormalities required for diagnosis</td>
</tr>
<tr>
<td>NIA-AA</td>
</tr>
<tr>
<td>‘AD’ refers to the pathologic process, whether asymptomatic or symptomatic</td>
</tr>
<tr>
<td>Retain ‘MCI’</td>
</tr>
<tr>
<td>Subjective and/or objective impairment in memory and/or nonmemory domains</td>
</tr>
<tr>
<td>Biomarker abnormalities support diagnosis but not required</td>
</tr>
</tbody>
</table>

Similarities and Differences of IWG and NIA-AA criteria

• **Similarities**
 – the recognition of a preclinical stage of the disease
 – the acceptance of a diagnosis of AD prior to dementia
 – the incorporation of AD biomarkers to diagnose (IWG) or provide support for the diagnosis (NIA-AA) of AD

• **Differences**
 – IWG: objective memory impairment and positive biomarker mandatory
 – NIA-AA: subjective or objective memory impairment, positive biomarker supportive but not mandatory
 – IWG: pathophysiological biomarkers
 – NIA-AA: biomarker algorithm
 – IWG: prodromal patients do not have any functional impairment
 – NIA-AA: “mild problems” in iADL also in patients with MCI
Similarities and Differences of IWG and NIA-AA criteria

• Similarities
 – the recognition of a preclinical stage of the disease
 – the acceptance of a diagnosis of AD prior to dementia
 – the incorporation of AD biomarkers to diagnose (IWG) or provide support for the diagnosis (NIA-AA) of AD

• Differences
 – IWG: objective memory impairment and positive biomarker mandatory
 – NIA-AA: subjective or objective memory impairment, positive biomarker supportive but not mandatory
 – IWG: pathophysiological biomarkers
 – NIA-AA: biomarker algorithm
 – IWG: prodromal patients do not have any functional impairment
 – NIA-AA: “mild problems” in iADL also in patients with MCI
Which criteria are the most sensitive and specific?

• This is not settled yet.
• These differences may lead to different populations.
• We can always describe them.
• EMA does not need to endorse a specific set of diagnostic criteria, thus from a regulatory perspective any recommendation of diagnostic criteria particularly for early AD (i.e. prodromal AD/ MCI due to AD and preclinical AD) is kept open.
• Highest sensitivity and specificity should be strived for!
• It is important to have homogeneous inclusion criteria to enable global development programs.
Impact on approach to demonstrate therapeutic efficacy

- Different requirements to assess therapeutic efficacy are distinguished according to
 - the potential claims of treatment, e.g. **symptomatic improvement** or **disease modification** and **prevention** and
 - the **stage of the disease** (preclinical, prodromal/MCI, mild, moderate or severe dementia)
Symptomatic improvement

• Dementia Trials
 – Co-primary outcome measures
 • Cognition
 • Function
 – Response criteria for clinical relevance
 • proportion of patients with meaningful benefit
 – Secondary endpoints
 • Global domain, additional symptoms (e.g. agitation)

• Trials in prodromal/ MCI due to AD
 – Co-primary approach more challenging
 – Should still apply in principle
AD Progression Model (Jack 2013)

Figure 2: Dynamic biomarkers of the Alzheimer’s pathological cascade

Aβ is identified by CSF Aβ42, or PET amyloid imaging. Tau-mediated neuronal injury and dysfunction is identified by CSF tau or fluorodeoxyglucose-PET. Brain structure is measured by use of structural MRI. Aβ=β-amyloid. MCI=mild cognitive impairment.
AD Progression Model

![AD Progression Model Diagram]

Figure 2: Dynamic biomarkers of the Alzheimer's pathological cascade

Aβ is identified by CSF Aβ_{42}, or PET amyloid imaging. Tau-mediated neuronal injury and dysfunction is identified by CSF tau or fluorodeoxyglucose-PET. Brain structure is measured by use of structural MRI. Aβ=β-amyloid. MCI=mild cognitive impairment.
AD Progression Model

Figure 2: Dynamic biomarkers of the Alzheimer’s pathological cascade
Aβ is identified by CSF Aβ42, or PET amyloid imaging. Tau-mediated neuronal injury and dysfunction is identified by CSF tau or fluorodeoxyglucose-PET. Brain structure is measured by use of structural MRI. Aβ=β-amyloid. MCI=mild cognitive impairment.
Clinical endpoints

• **Earliest Symptoms**
 – Subtle cognitive deficits
 – No detectable functional impairment
 – Most to gain (potentially)

• **Use of isolated cognitive measures, composite scales**
 – Several scales under development
 – Small effect sizes
 – Hard to interpret clinical meaningfulness
Design features

• **Symptomatic improvement**

 – **Dementia stage of AD**

 Standard clinical trial design: DB, placebo-controlled, parallel group, dual outcome approach, active comparator,

 Alternative: add-on designs

 Duration of treatment: 6 months

 – **Prodromal AD/MCI due to AD**

 Placebo is the comparator of choice

 Duration of treatment: 6 months may not be enough,
 assessment of efficacy and safety at regular intervals,
 maintenance of effect is important
Disease modification

- It may be difficult to differentiate unambiguously between symptomatic and disease modifying effects only on the clinical endpoints.
- From a regulatory point of view, a medicinal product can be considered as disease modifying, if the progression of the disease as measured by assessment tools addressing both cognition and function is reduced or slowed down and if these results are linked to a significant effect on adequately qualified and validated biomarkers.
- Suitable study designs are needed.
- Two-step approach a way forward?
Disease modification

– Co-primary outcome measures
 • Cognition
 • Function

– Response criteria for clinical relevance
 • proportion of patients with meaningful benefit

– Secondary endpoints
 • Global domain
 • Biomarkers
Design features

• Disease modification
 – Prodromal AD/MCI due to AD and mild to moderate dementia
 • Placebo-controlled trials are mandatory, stratification for standard of care
 • Standard parallel design might be problematic
 • Slope analysis assumes a linear model over time and a constant treatment effect
 • Randomized withdrawal or randomized delayed start design
 • Time to event analysis
 • Study duration: 18 months for mild to moderate AD, 24 months for prodromal AD?
Delayed start design

- Stanzione P et al. 2011
Design features

- Prevention trials in preclinical patients

 Time to event approach: onset of dementia or onset of cognitive impairment,

 even longer study durations?

Scientific advice is recommended.
Combination treatment

• A trial where the combination is compared to two monotherapy arms
• May be difficult for DM therapies
• Exclusion of monotherapy arms needs to be justified
 – lack of efficacy in previous monotherapy programs
 – convincing phase 2 data demonstrating additive/synergistic effects of the combination over each monotherapy arm not only on biomarkers but also on clinical parameters
Points for discussion

• Do IWG and NIA/AA criteria identify different populations?
• The co-primary endpoint approach in early disease stages?
• What is the optimal study duration in early disease stages?
• The concept of disease modification: what is the best approach?
Thank you for your attention!