

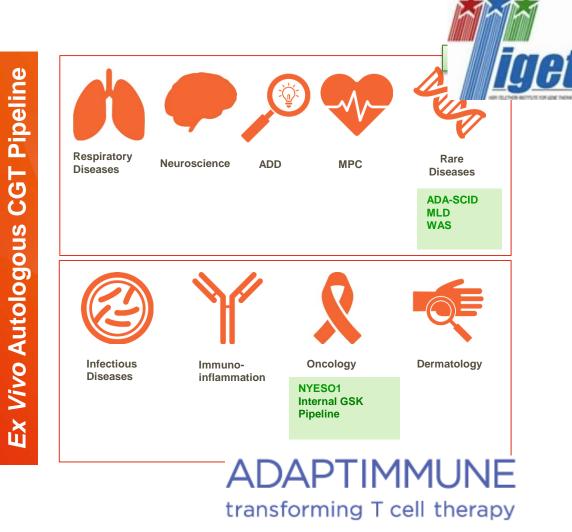
CMC Development and Manufacturing Challenges

Steven Howe, GSK, Cell and Gene Therapy (CGT) Platform 16 Dec 2016

Summary of CGT technologies – GSK View

- ATMPs broader than Gene Therapy. GSK focus has been on Gene Therapy hence the focus of this talk
- Comments, differing points of view on other ATMPs welcome

Partnerships to accelerate growth and build expertise



GSK's investment in ex vivo autologous cell platform

Development and manufacturing collaborations

Promise and Challenge of CGT Medicines

Pipeline

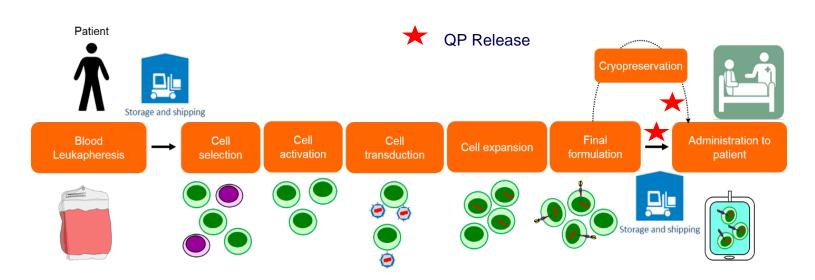
Ex-Vivo Autologous Therapy

Development and Manufacturing Challenges

- Vector Scale-Up Capacity, Quality, Robustness
 - Current challenge and some suggested future approaches
- Ex-Vivo Cell Processing Scale out 1 patient = 1 batch
 - Scale out challenge and proposed future vision
- Change Management Approach to Comparability
 - Rational approach to comparability
- Analytical- Modernization of analytical tools
- Supply chain Logistics and Supply Chain

Vector Manufacturing

- Adherent cell factory processes
- Operation usually in <100L volumes</p>
- 1 batch can meet the drug product needs for 1 to 10 patients (typically)


Vector Scale Up – Proposed approach

- Fully disposable scalable platform
- Move from adherent culture to suspension
- Move from transient transfection to stable cell line production
- Eliminates the need for ongoing plasmid manufacture
- Important challenges to address, stability of cell line, titer, "true platform"
- Has the potential to transform current processes to meet demands such that 100s and 1000s of doses per batch

Cell Process Scale out

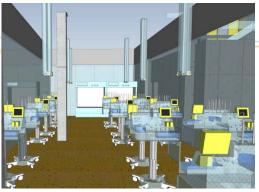
- Current process manual, very often involve open manipulations by highly skilled operators
- Scale out needs significant as patient populations particularly in Oncology could be large

Manufacturing Models

Centralized

- Single facility, cells in (Fresh/frozen), drug product out (typically frozen)
- Controlled operations, minimize product variation, maximize expertise
- Challenges: practicality for large indications, availability of trained operators, logistical challenges

De-centralized


- Regional Hubs
- True scale out, reduces logistical challenges, better patient access
- Tech transfer needed, both process and analytics
- Raw Materials, consumables supply chain

Cell Process Scale out – Future Direction

Bespoke, manual process

Current Regional Cell Processing
Hubs

Multiple Automated units in a ballroom suite in regional hubs

'Ballroom' Suites in Regional Hubs with Exact Copy Automation

Fully automated system with integrated QC testing

Challenges

Cell Processing "In Hospital Solution"

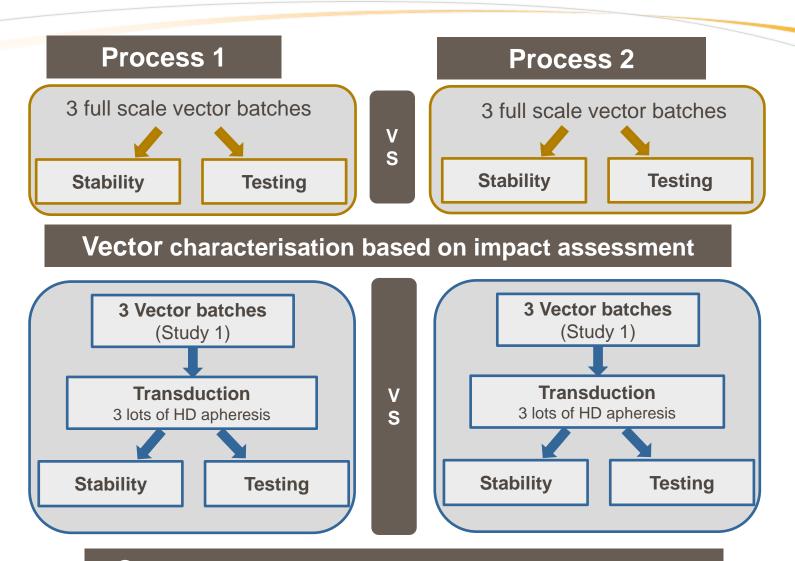
Technical	GMP/Regulatory
Fully closed, automated process	QA, QP Release Local?
In-line, in -process analytics	Manufacturing within hospital
Continuous process validation	Robust tracking
Raw Material sourcing/supply	Troubleshooting, deviation management, QMS
Process and product drift over time	10
	10

Change Management and Comparability

- Rapid pace of innovation in tools for manufacturing and testing
- Continuous and logical application of these tools will involve management of change and proving comparability
- Approach to comparability that GSK has followed is based on Risk Assessments and general framework provided by ICH Q5E
- Examples based on expected changes in manufacturing

Proposed Changes – An Approach to Address Comparability

	ing Process onent	Process v 1.0	Proposed Process v 2.0	Rationale for Change
Vector Process Case 1	Cell expansion	Adherent	Suspension	 Enable treatment of larger
Cell Process Case 2	Cell manipulation	Manual production	Implementation of automation	population of patients including some older patients Improve supply chain robustness
	Final product formulation	Fresh product with 4 hour shelf life	Cryopreserved product.	


Assess Impact of Vector Process Change

Vector CQAs	Potential Impact
Infectious viral titer	
Infectivity	
Transgene sequence	L
Vector Integrity	L
HCP	Н
HC DNA	
Benzonase	L
Microbiological Control	L
mycoplasma	L
endotoxin	L
Adventitious virus	L
Plasmid DNA	M
RCL	L

rationale for outputs to be studied

Cell Product CQAs	Potential Impact
Percent CD34+	L
Vector copy number	
CD34+ Stem Cell Potential	L
Enzyme Activity	
Cell Viability (%)	L
Transduction efficiency	Н
Endotoxin	L
Mycoplasma	L
Microbiological Control	L
RCL	L
Adventitious virus	L
HCP	Н
Plasmid DNA	M
Host Cell DNA	Н
Residual cytokines	L

Comparability Study Design

Cell characterisation based on impact assessment

Discussion Points

- 1. The need for in vivo comparability studies
- 2. Will cell product comparability always be required to support vector process changes?
- 3. How should in vitro comparability studies be designed when considering manufacturing site changes (e.g. sites in Europe and US)?
 - a) Split apheresis between two sites (logistical risks)
 - b) How to set acceptance criteria despite inherent variability of starting material? Use (sometimes limited) clinical and development data?
- 4. What are comparability implications for a true decentralized or in-hospital solution?
- Need for analytical method comparability (bridging studies) when assays are changed

Summary

- ATMPs have the potential to be transformative medicines
- Current manufacturing paradigms will need substantial innovation in all aspects – Technical, Regulatory, Quality, to supply global demand for these medicines
- Close collaboration between industry, academia, and regulatory agencies needed to bring these transformational medicines to a wider patient population

