

Clinical Pharmacogenomics: Premarketing **Evaluation in Early Phase Clinical Studies**

Mike Pacanowski, PharmD, MPH

Office of Clinical Pharmacology Office of Translational Sciences Center for Drug Evaluation and Research U.S. Food and Drug Administration

> FMA8 Oct 2012

Application of metabolic data to the evaluation of drugs.

"Differences in individual ability to metabolize drugs must be considered in carrying out clinical pharmacologic studies...A universally safe drug, completely incapable of unusual or unexpected effects, is unobtainable."

NAS-NRC, CPT 1969

"It is no longer possible to prescribe drugs rationally on the basis of a memorized schedule of dosages and contraindications."

Azarnoff, JAMA 1970

National Center for

Toxicological

Research (NCTR)

www.fda.gov

FDA's Personalized **Medicine Universe**

Center for Tobacco Products

Center for **Veterinary Medicine** (CVM)

Center for Devices and Radiological Health (CDRH)

> **Center for Food** Safety and Applied **Nutrition (CFSAN)**

Maternal Health and Botanical **Teams**

Compliance

Information Technology

Medical **Policy**

Center Director

New Drugs

Translationa Sciences

Management

Pharmaceutic Sciences

Surveillance and

Epidemiology

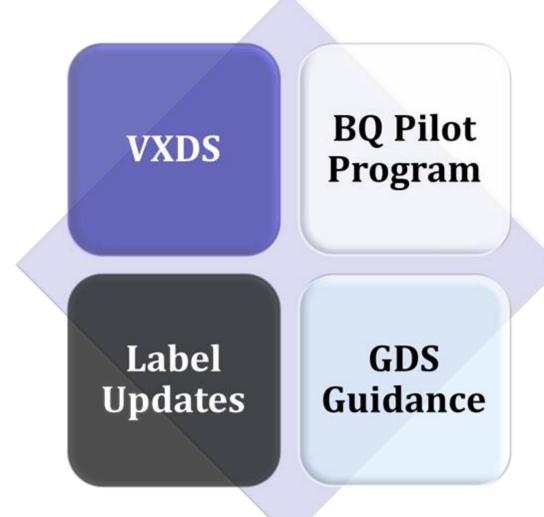
Executive **Programs**

Business Process Support

Regulatory **Policy**

Counterterrorism

Training and Communication


Office of the Commissioner (OC)

Evaluation and Research (CDER)

Center for Drug

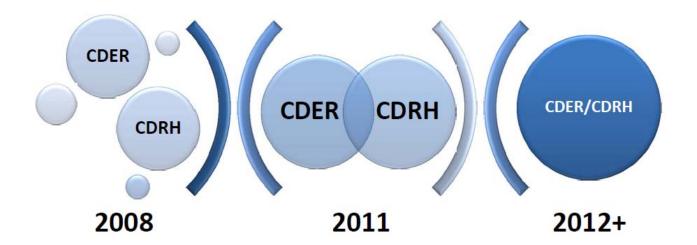
Center for Biologics Evaluation and Research (CBER)

Present State – PG Elements of NME NDAs/BLAs FY2011

Drug	Approval	Issue(s)
Crizotinib	8/26/11	Co-developed (ALK status)
Vemurafanib	8/17/11	Co-developed (BRAF status)
Ticagrelor	7/20/11	PD/efficacy by CYP2C19 status; exploratory safety
Indacaterol	7/1/11	PK by UGT1A1 status
Belatacept	6/15/11	Safety by EBV/CMV status
Ezogabine	6/10/11	PK by UGT1A1 and NAT2 status
Telaprevir	5/23/11	Efficacy by IL28B, safety by HLA
Boceprevir	5/13/11	Efficacy by IL28B, safety by ITPA
Ipilimumab	3/25/11	PGx of safety
Belimumab	3/9/11	Efficacy by SLE biomarkers
Roflumilast	2/28/11	Safety potential by human vs. animal genome
Vliazodone	1/21/11	PGx of efficacy and safety
Dabigatran	10/19/10	Differential PK/outcome by ABCB1, VKOR/2C9

U.S. Regulatory Guidance

2005	Guidance on PG Data Submissions		
	Concept Paper on Drug-Diagnostic Co-Development		
2007	Companion Guidance on PG Data Submissions		
	Guidance on PG Tests and Genetic Tests for Heritable Markers		
2010	ICH E16 Concept Paper on PG Biomarker Qualification: Format and Data Standards		
	Guidance on Chronic Hepatitis C Virus Infection: Developing Direct-Acting Antiviral Agents for Treatment		
	Guidance on Qualification Process for Drug Development Tools		
2011	Guidance on Clinical PG: Premarketing Evaluation in Early Phase Clinical Studies		
	Guidance on in vitro Companion Diagnostic Devices		
In Process	Guidance on Clinical Trial Designs Employing Enrichment Designs to Support Approval of Human Drugs and Biological Products		



Rational Drug Development Successes...Ushering in the Next Generation

Problem Drugs

High variability
Disproportionality
Race effects
Outliers
No monitoring tools

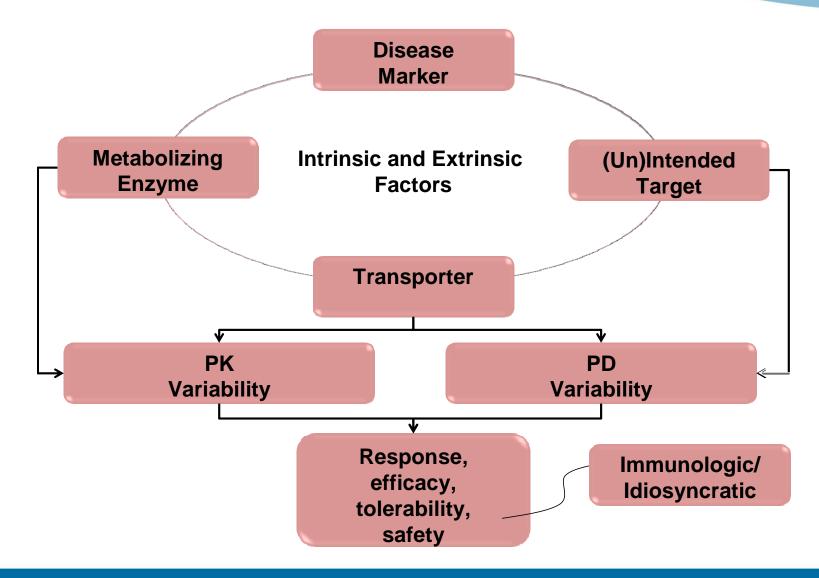
Clinical PK
Polymorphic
metabolism/
activation

Exposure/response

diosyncrasy

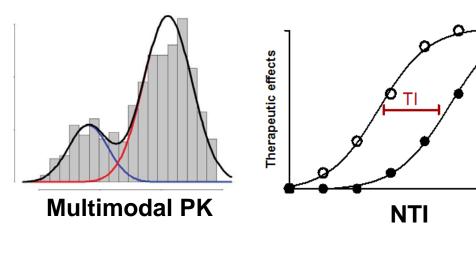
Efficacy
Morbid/ mortal
indication
Disease genetics

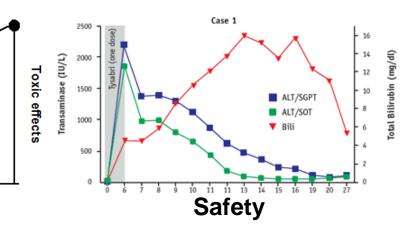
Safety
Serious AEs
Poor tolerability

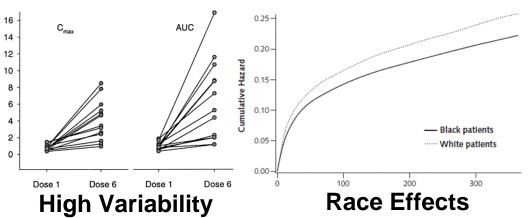

- Purpose is to guide industry on when to consider how human genomic variation (specifically DNA) affects a drug's PK, efficacy, or safety
- Provides general principles of study design, data collection, data analysis and labeling for PG studies
- Scope: Early phase clinical trials (exploratory and observational studies)
 - Not statistical considerations for later phase RCTs intended to draw conclusions from genomic subgroup effects or codevelopment
 - Does not address tumor genomics specifically

Background

- Uses for genomic data
 - Basis for PK/PD outliers, intersubject variability
 - Investigating molecular/mechanistic basis for lack of efficacy, AEs
 - Estimating magnitude of potential DDIs
 - Subgroup effects and enrichment
- Potential clinical outcomes
 - Select patients based on risk/benefit profile
 - Modify dosing to avoid extreme exposures
 - Intensify AE monitoring




Genetic Factors of Interest

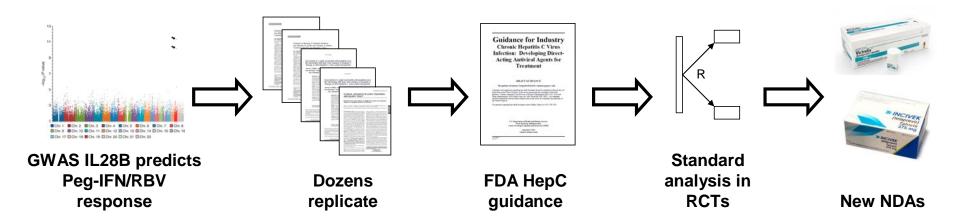


Foundational Principle: No PG without DNA

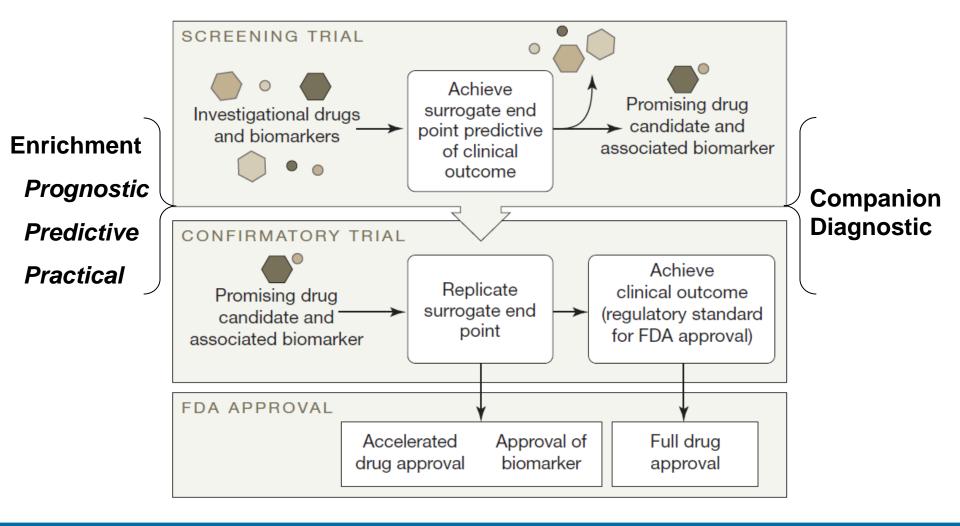
DNA in all if hypothesis **DNA** in all if no hypothesis (where possible) If not all, many (+ targeted from "cases") If not all, why not

DNA Collection and Storage: General considerations

- Obtain broad consent
- Collect before randomization to minimize bias
- Retain samples to allow post-approval assessment
- Document reasons for incomplete sampling
- Provide information to support sample quality and integrity, in addition to QC/QA in CSR


- Hypothesis testing: Candidate gene
 - Test well-characterized, functional variants in ADME genes or drug target
- Hypothesis-generating: ADME or genome-wide chips
 - Useful for unresolved variability in exposure and/or response
 - High rate of false-positives confirm findings in vitro or in additional clinical studies
- Marker selection
 - Appropriate to racial/ethnic group being studied

Applied Clinical Evaluation: PG Study Design


- Retrospective genotyping
 - Subgroup analysis, meta-analysis, case-control
 - Generally exploratory; appropriate for PK and safety endpoints
- Prospective genotyping
 - Stratified randomization/intervention, enrichment (inclusion/exclusion, over-enrollment)
 - Indicated for thorough PG assessments, doseadjusting or excluding at-risk/non-responsive subjects from early trials, evaluating stratified dosing or efficacy in late phase trials, reducing noise in DDI studies

Paradigm Change and the "Progressive Reduction of Uncertainty"

Seamless "Learn/Confirm" Paradigms May Provide a Path

- Defines "companion diagnostic"
 - Test essential for safe and effective drug use
 - Prediction, prognosis, selection, dosing, monitoring
- Describes FDA's policies for approval and labeling of a therapeutic/diagnostic product pair
 - Pre-market review, risk-based regulation
 - Analytical validity of tests used for critical treatment decisions to be reviewed
- Does not describe how to co-develop products

PDUFA REAUTHORIZATION PERFORMANCE GOALS AND PROCEDURES FISCAL YEARS 2013 THROUGH 2017

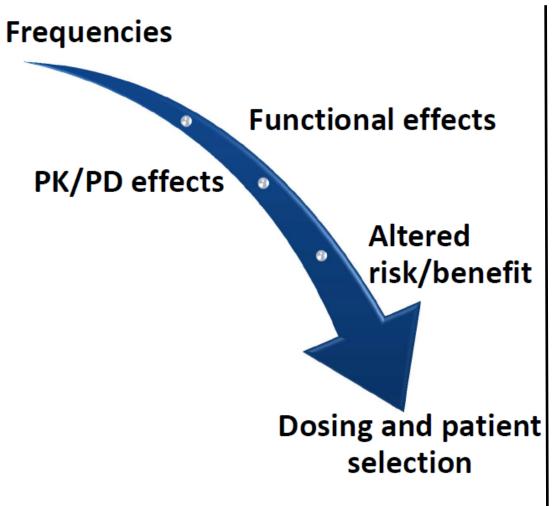
IX. ENHANCING REGULATORY SCIENCE AND EXPEDITING DRUG DEVELOPMENT

- A. Promoting Innovation Through Enhanced Communication Between FDA Sponsors During Drug Development
- B. Advancing the Science of Meta-Analysis Methodologie Develop capacity
- C. Advancing the Use of Biomarkers and Pharmacogen
- **D.** Advancing Development of Patient-Reported Out Assessment Tools
- **E.** Advancing Development of Drugs for Rare Diseases

Train staff

Public meeting

Summary and Conclusions


- Protecting and promoting public health are equally important charges to the FDA
- The role of PG in drug development is evolving, extends beyond drug-test pairs
- Regulatory policy has attempted to foster use of applied genomics in drug development, reducing uncertainty
- Co-development and Enrichment guidances to address late-phase issues related to biomarker-based drug development

www.fda.gov

Backup

INDICATIONS AND USAGE

Patient selection

DOSAGE AND ADMINISTRATION

Subgroup dosing

BOXED WARNING

CONTRAINDICATIONS

WARNINGS AND PRECAUTIONS

ADVERSE REACTIONS

USE IN SPECIFIC POPULATIONS

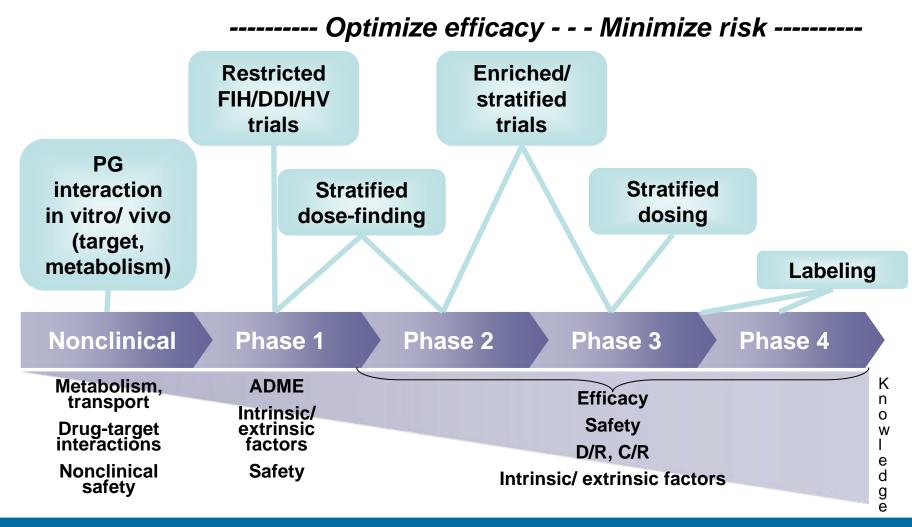
Differential safety

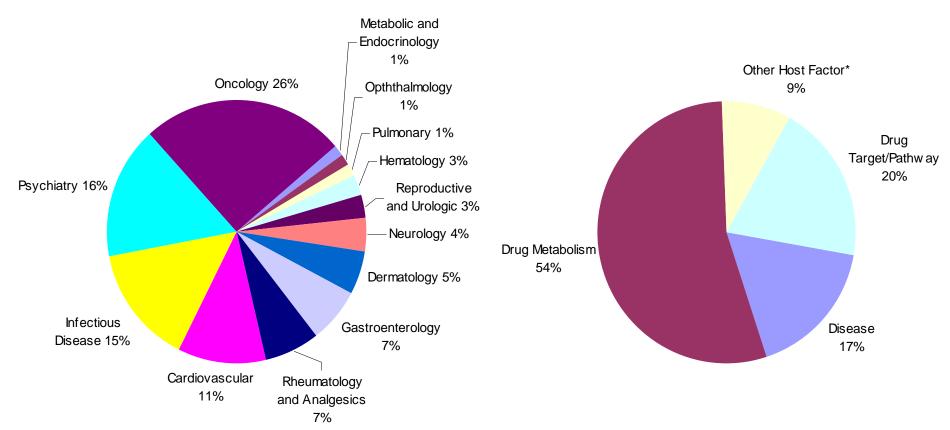
CLINICAL PHARMACOLOGY

Impact on PK/PD

CLINICAL STUDIES

Substantial evidence of observed or neutral differences


- Evaluate PG interactions in context of clinical covariates, particularly race/ethnicity
- PBPK modeling may provide supportive evidence
- Control multiplicity
- Evaluate test performance (e.g., PPV, NPV)
- Address bias in substudies (i.e., differences from overall population, preservation of randomization)
- Establish strength, cohesion, etc
- Replicate
- Assay
 - Establish QC materials, standards, calibrators, and validated protocols to assure continued analytical performance
 - Consult CDRH for imminent test


- Is a general plan for DNA collection (for exploratory studies) indicated based on the expected metabolic/PK, efficacy, and/or safety profile?
- Should any markers be tested in all subjects?
- Should any subjects be excluded based on the potential for high exposure/toxicity?
- Should only certain subjects be included to reduce noise?
- Are a sufficient number of studies planned to support retrospective analyses?
- Will a dedicated PG study be necessary before Phase 3 (for dose selection)? Approval?
- Are the analytical methods and SAP clearly described?

Enhancing Drug Development: Prospective Maneuvers

PG in Drug Labels

Cancer, psychiatric, and infectious disease therapeutics make up more than half of the drugs with PG labeling

Most PG labeling is related to drug metabolism