Confirmatory subgroup analyses: Case Studies

Frank Bretz, Gerd Rosenkranz, Emmanuel Zuber EMA expert workshop on "Subgroup analysis" London, November 18, 2011

Subgroup analyses

- Exploratory subgroup analyses are often used to:
 - assess internal consistency of study results
 - rescue a failed trial by assessing the expected risk-benefit compared to the whole trial population in a post-hoc manner
- Confirmatory subgroup analyses
 - pre-specify one (or more subgroups) in the trial protocol (based on demographic, genomic or disease characteristics)
 - control Type I error rate for the pre-specified multiple hypothesis test problem and fulfill other standard requirements for confirmatory trials

Treatment of Hep B in HBeAg+/- patients

Design options under discussion, each with advantages / limitations

1. Two separate studies

- + flexibility in conducting each study on its own; if staggered study begin, second study design may benefit from first study results;
- costs

2. One singly study with two strata (or cohorts)

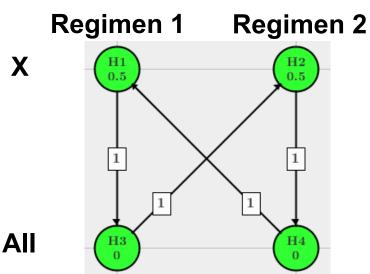
- one protocol; better estimation of relative efficacy/safety profile between subgroups; allows estimation of overall treatment effect (of interest here?)
- need for harmonized endpoint(s), no learning phase, independent timelines

3. Two studies under one umbrella protocol

- + one protocol; retain flexibility through separate randomization schemes
- less rigorous in some aspects (pooled analysis, relative efficacy/safety, ...)

New treatment as add-on to background therapy

Primary objective:

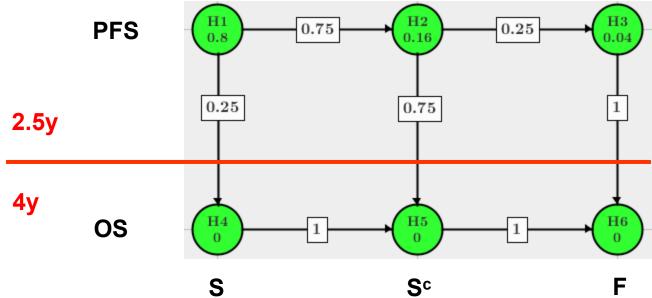

To demonstrate efficacy of at least one of two regimen as add-on therapy despite stable **treatment with X**

Secondary objective:

To demonstrate efficacy of at least one of two regimen as add-on despite stable treatment with X or other drugs of the same class

Design:

Randomization to be **stratified** by **X** or **not X**, enrollment such that 100p% of patients are on X.



New treatment in **naive/pre-treated patients** for PFS and OS

Structured hypotheses with two levels of multiplicity

- 1.Two-armed trial comparing with six hypotheses: novum vs. verum for
 - three populations (S = naive, S^c = pre-treated, F = full population)
 - two hierarchical endpoints: PFS (after 2.5 years) → OS (after 4 years)
- 2.Important clinical considerations
 - conditional approval envisaged if PFS significant (study then continued until OS analysis)
 - avoid significance in S and F, but no significance in S^c (otherwise difficulties with label)

How to construct decision strategy that reflects such requirements?

Confirmatory studies for China

Population:

~80% patients from mainland China (S) and ~20% not ethnic Chinese (Sc)

Randomization:

Stratification by mainland Chinese and other

Requirements:

- •Stand alone report on mainland Chinese population with significant result
- Report on full population as supportive analysis
- Multiplicity adjustment not necessary

Remark:

- •Multiplicity adjustment useful if full study contributes to submission outside China
- •Alternative option: Primary objective on Chinese population, secondary on full population (hierarchical testing)

Case study 5 (Brannath et al., 2009)

Confirmatory adaptive design for a targeted therapy in oncology

Targeted therapy might primarily benefit a subpopulation

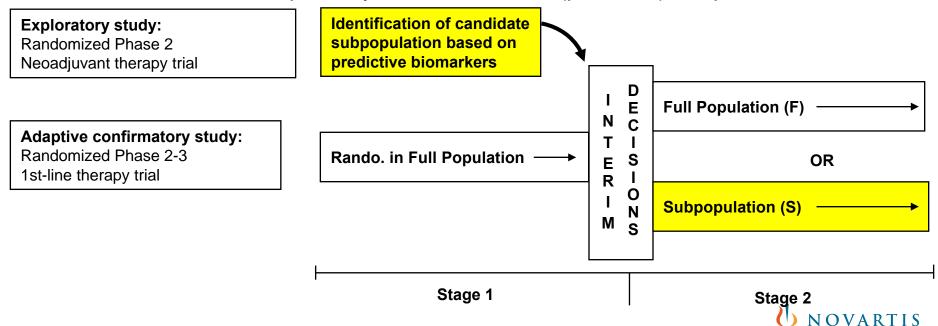
Evidence of activity

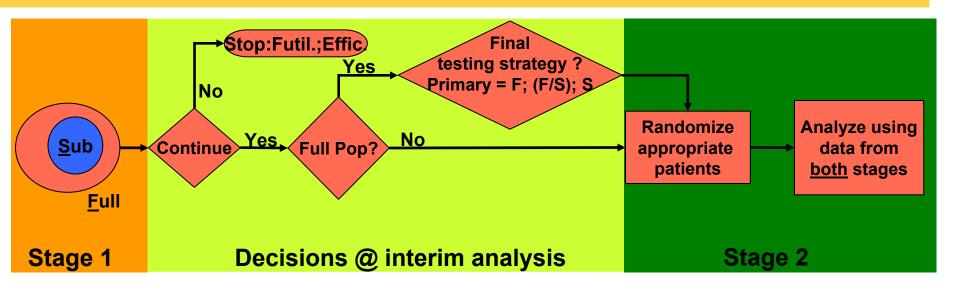
- Preclinically & Clinically
- > But requires better definition of biological characteristics of benefiting patients

Traditional approach to identify & confirm a sensitive subpopulation:

- Exploratory trial(s) to identify subpopulation with greater benefit
- Phase II to confirm greater benefit in identified subpopulation
- Phase III trial in the chosen target population (full or subpopulation)

Ethical and strategic relevance of allowing


- Focus as early as possible on subpopulation, if it can be defined
- Efficient use of data from patients needed to confirm the subpopulation
- → Integrate Phase II & III objectives in a single adaptive trial


Clinical development outline

Exploratory trial: large randomized phase II, baseline markers, response rate **Adaptive trial:** two stages, with an interim analysis, to simultaneously meet

- Phase II objectives
 - to confirm greater benefit in independently identified subpopulation
 - to decide whether or not to adapt trial to focus on that subpopulation
- > Phase III objective
 - to demonstrate superiority on time to event (phase III) endpoint

Confirmatory phase III adaptive design

- Stage 1: Futility stop or subpopulation selection (Bayesian tools)
 - Subpopulation defined prior to interim analysis (external to trial)
 - Probabilities of false positive and false negative decisions described a-priori via simulations
- Stage 2: Confirmation of treatment benefit while maintaining integrity
 - Combining evidence from first and second stage
 - > False positive rate controlled by method, simulation used to explore power

Methodology for Type I error rate control

Multiplicity issues

- Testing in 2 populations, group sequential testing (2 stages)
- Stage 2 adapted based on stage 1 data

Adaptive design methodology

- Independent p-values from 2 stages combined: inverse normal method
- ➤ Time to event: Independent p-values based on logrank asymptotic independent increments property
- O'Brien-Fleming α-spending function
- Closed testing procedure

Adaptation decisions: Bayesian tools and rules

Bayesian tools:

- > Predictive power:
 - Probability of success in each of the possible stage 2 situations (F or S)
- Posterior probability:
 - Probability that the patients in S^c (outside the subpop.) do not benefit

Decision rules:

- Predictive power in F and in S < threshold(s) π{F, S}
 ⇒ stop for futility
- Only the predictive power in S > threshold π{S}
 or
 Probability (treatment effect in S^c < target) > threshold π{S^c}
 ⇒ go with subpopulation
- ➤ Otherwise⇒ go with full population

Power simulations (selected results)

Assume **no subpopulation effect** (all patients benefit from treatment):

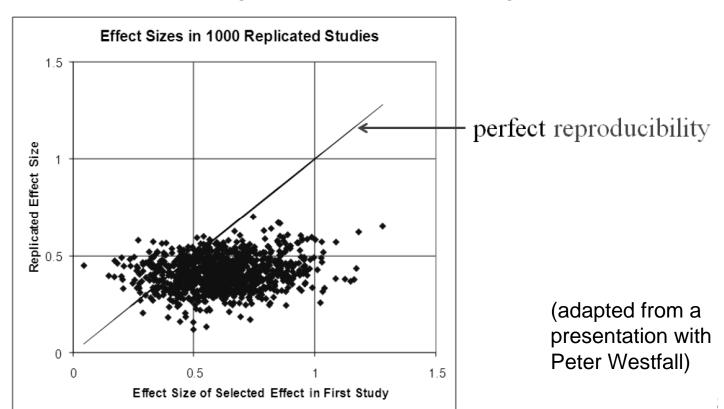
- Conventional phase III (no interim analysis): 98% power
- Conventional phase III with interim (effic./futility): 88% power
- Adaptive design phase III: 87% power (across a variety of values of subpopulation prevalence)

If only S benefits:

Overall power

	o roran pomo.		
S prevalence	Adaptive ph. III	Conventional sequential ph. III	Conventional seq. ph. III, test in F+S
30%	57%	16%	39%
40%	65%	28%	52%
50%	71%	41%	62%

[with π {F, S} =35%, π {S°} =90%]



Scientific concern: Reproducibility (selection bias)

Assume 2 independent studies:

- Study I novum vs. verum for 2 subgroups
- Study II select "best" subgroup from Study I and compare novum vs.
 verum for that subgroup

Simulation results (1000 trials, assuming equal effect in both subgroups):

Conclusions

- Applications involving confirmatory subgroup analyses very diverse
- Selection of population of interest (S / S^c / F) not always clear and depends on context
- Adaptive designs logistically more complex (trial integrity!), but have the potential for more efficient drug development
- Enriching the subpopulation may lead to interpretation problems
- Lack of reproducibility is a major concern, even more in retrospective analyses than in studies with prospectively defnied subgroups

