Ocular Surface Biomarkers and Inflammation

A. J. Bron Nuffield Laboratory of Ophthalmology Oxford

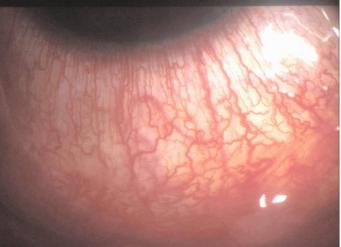

EMA 27/28th October

Image -freedoncurrent.com

Biomarkers in Inflammation

- Scope
- Definition of a biomarker
- Applications
- Risk factors v Screening
- Ocular Phenotypes
- Measuring Symptoms
- Signs v Symptoms
- Sampling variables

- Biomarker Technologies
- Monitoring Candidates
- Diagnosis Bioinformatics
- Duration of trials
- Conclusions

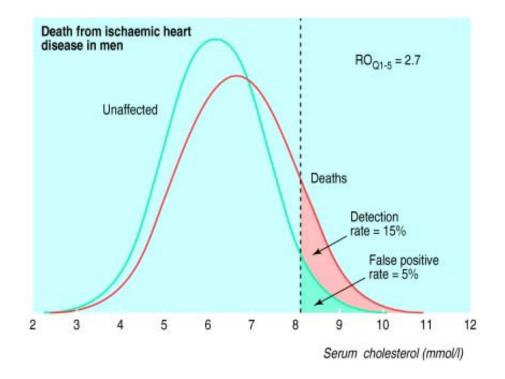
Scope

- •Prenatal screening:
- Neonatal screening
 - endocrine and metabolic
 disorders, lysosomal storage
 dis.
- •Adult diagnosis
- Alzheimer's diagnosis:
 –CSF: Aβ and τ; FDG-PET scan
- •HER2 –efficacy of HER2 blockade in treatment of metastatic breast cancer

- Huntingdon mutation in HD
- Serum anti-citrullinated peptide plus RhF in Rheumatoid arthritis diagnosis (PPV 100%)
- Prediction of morbidity/ mortality in end stage renal failure.

Definition and Applications

- A diseaseassociated parameter
- Discriminates affected from unaffected


- Predicting Risk
- Screening
- Diagnosis
- Scaling severity
- Monitoring progress
- Predicting response to therapy
- Determining prognosis
- Understanding disease mechanism

Prediction of dry eye in at-risk groups?

- Contact lens wear
- Isotretinoin therapy -MGD
- LASIK -Refractive laser surgery dry eye or LINE
- Chronic topical preservatives in glaucoma therapy
- Bone marrow transplantation G v H disease
- Connective tissue disease 2° rheumatoid Sjögren
- Postmenopausal estrogen therapy
- Meds: antihistamines
- Androgen deficiency or receptor blockade

Is a strong risk factor of use in screening:?

- The relative odds for the association of cholesterol (RO₁₋₅) with Ischaemic Heart Disease ≅ 2.7
- This gives a DR₅ ≅
 15% which is poor for a screening test

- Emerging Risk Factors Collaboration: CRP and CHD Kaptoge et al 2010
 - Odds ratio 3
- Rotterdam Coronary Calcification Study: CC and CHD
 Vliegenthart et al. 2005
 - Relative risk 8.3
- Atherosclerosis Risk in the Community: HbA1C- DM and CHD
 - Selvin et al. 2010
 - Odds = 103.5 [for Diabetes]

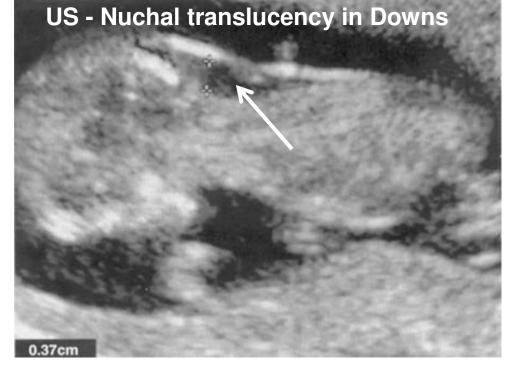
See Wald and Morris 2011 Arch Intern Med 2011; 171:

- Emerging Risk Factors Collaboration: CRP and CHD Kaptoge et al 2010
 - Odds ratio 3
 - $DR_5 = 9\%$
- Rotterdam Coronary Calcification Study: CC and CHD
 Vliegenthart et al. 2005
 - Relative risk 8.3
- Atherosclerosis Risk in the Community: HbA1C- DM and CHD
 - Selvin et al. 2010
 - Odds = 103.5 [for Diabetes]

Wald and Morris 2011:

- Emerging Risk Factors Collaboration: CRP and CHD Kaptoge et al 2010
 - Odds ratio 3
 - $DR_5 = 9\%$
- Rotterdam Coronary Calcification Study: CC and CHD
 Vliegenthart et al. 2005
 - Relative risk 8.3
 - $DR_5 = 22\%$
- Atherosclerosis Risk in the Community: HbA1C- DM and CHD
 - Selvin et al. 2010
 - Odds = 103.5 [for Diabetes]

Wald and Morris 2011:


- Emerging Risk Factors Collaboration: CRP and CHD Kaptoge et al 2010
 - Odds ratio 3
 - $DR_5 = 9\%$
- Rotterdam Coronary Calcification Study: CC and CHD
 Vliegenthart et al. 2005
 - Relative risk 8.3
 - $DR_5 = 22\%$
- Atherosclerosis Risk in the Community: HbA1C- DM and CHD
 - Selvin et al. 2010
 - Odds = 103.5 [for Diabetes]

Wald And Mog 2011:

www.wolfson.gmul.ac.uk/rsc/

Screening for Downs and Neural Tube Defect

- 2-step integrated test for Downs
- 1st Trimester –nuchal translucency and serum pregnancyassociated plasma protein A
- 2nd Trimester AFP, hCG, unconjugated estriol, and Inhibin-A
- Risk result in 2nd tr.

Serum AFP raised in NTD Nearly all NTD pregnancies can be identified by AFP screening. $DR_5 = 91\%$ spina bifida

Valuable diagnostic tests may take time to

Wald 2010

DRY EYE

Global features

Phenotypes

Symptoms +

Hyperosmolarity +

Tear Instability +

Surface stain +

DRY EYE

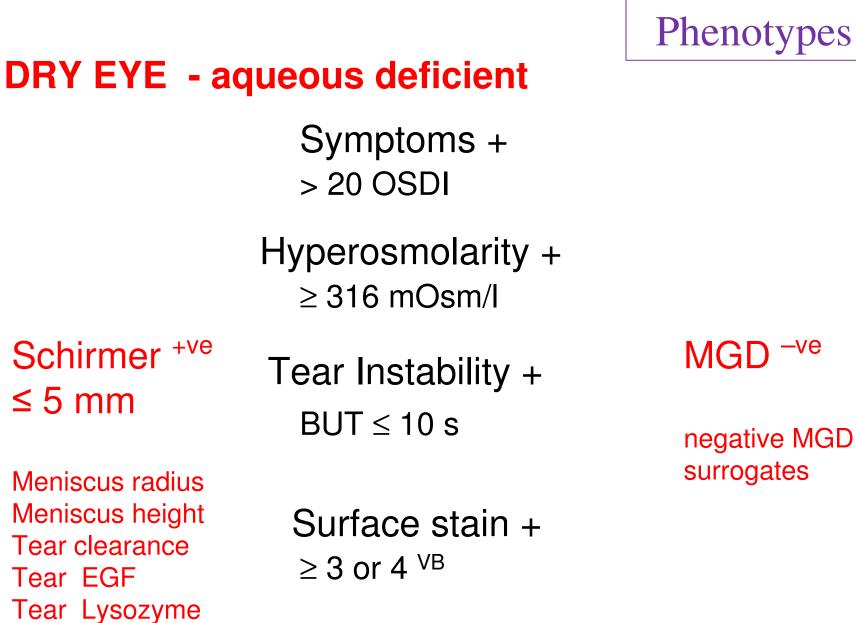
Global features

Symptoms + > 20 OSDI

Hyperosmolarity + ≥ 316 mOsm/l

Tear Instability + $BUT \le 10 s$

Surface stain + \geq 3 or 4 VB


MGD

-ve

negative MGD

surrogates

DRY EYE - aqueous deficient			
	Symptoms + > 20 OSDI		
	Hyperosmolarity + ≥ 316 mOsm/l		
Schirmer ^{+ve} ≤ 5 mm	Tear Instability + BUT \leq 10 s		
Meniscus radius Meniscus height Tear clearance Tear EGF Tear Lysozyme Tear Lactoferrin	Surface stain + ≥ 3 or 4 VB		

Tear allergy markers negative

Tear Lactoferrin

DRY EYE Evaporative

Symptoms + > 20 OSDI

Hyperosmolarity + ≥ 316 mOsm/l

Schirmer >5 mm Tear Instability + $BUT \le 10 s$

- negative LG surrogates

Surface stain + \geq 3 or 4 VB

MGD +

MGD signs + ↑evaporation TFLL changes Meibum change tear Calgranulin

DYSFUNCTIONAL TEAR SYNDROME

Symptoms + > 20 OSDI

Hyperosmolarity + ≥ 316 mOsm/l

Schirmer < 10 mm

Tear Instability + $BUT \le 7 s$

Surface stain + \geq 3 or 4 VB

MGD +

Lack of expressable meibum \ge 75% of glands

2 or more of: Acinar atrophy Orifice metaplasia Vascular dilatation at posterior lid margin

Endpoints – Signs versus Symptoms

symptoms in dry eye

- Soreness, irritation
- Gritty, scratchy
- Burning, stinging
- Itching
- Dryness
- Tired eyes.
- Light Sensitivity,
- Visual Change

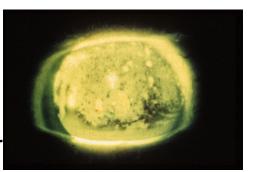
- Frequency
- Timing
- Intensity
- Provocations:
 - Low humidity-AC
 - Airflow windy day
 - Fumes smoke

Symptom Measurement

- In dry eye, whose major feature is symptoms, there is no surrogate for symptom measurement
- Validated Questionnaires are available
- Biomarkers whose levels correlate with symptom severity are of interest because they may be closer to

	Name	# of questio	Author
r t	Womens Health	3	Schaumberg et al. 2003
	Sjögren Consensus	3	Vitali et al. 2002
	Schein	6	Schein et al. 1997
	McMonnies	12	McMonnies and Ho 1986
	OSDI	12	Schiffman et al. 2000
	SPEED	12	Korb et al. 2005
	CANDEES	13	Doughty et al. 1997
	DEQ	21	Begley et al. 2002
	NEI-VFQ	25	
	OCULAR COMFORT INDEX	31	Johnson Murphy 2007
	IDEEL	57	Rajagopalan et al. 2005

Symptom / Sign correlation is often poor


- Goren 1988
- Begley 2003
- Nichols 2004
- Saleh 2006
- Moore 2009
- Fuentes-Paez
 2011

- Enriquez de Salamanca 2010
- No correlation with global scores:
- Some scattered corrIns with individual CKs.

Symptom sources in dry eye

Hyperosmolarity

- Diffuse: meniscus sample
- Focal: tear film break up
 - [Ocular Protection Index BUT/Blink inter

Reduced lubrication

- frictional drag: loss of glycocalyx and goblet cell mucin
- Iid wiper epitheliopathy.²

[Shearing between lids and globe during blinks and eye movements]

Conjunctivochalasis

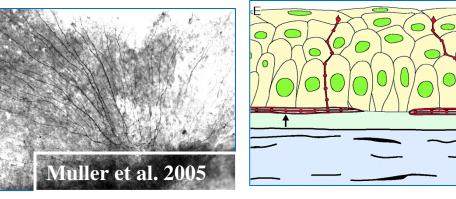
Inflammatory mediators

[Prostanoids, cytokines, neurokinins, neuromediators]

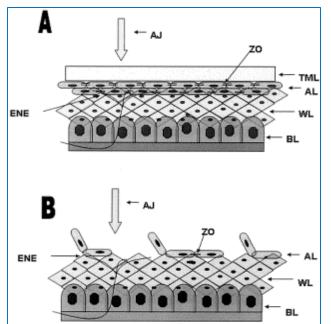
Ocular surface damage

[Alterred nerve excitability ³: neuropathic firing ⁴] 1. Ousler et al. 2008 2. Korb et al 2005 3. dePaiva and Pflugfelder 2004 4. Belmonte, Gallar 2011.

Symptom sources

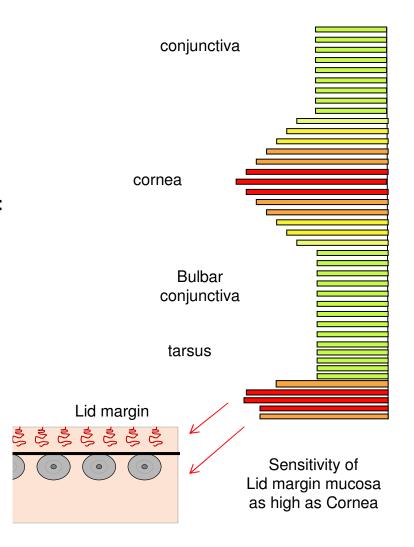

- are dependent on-

Corneal sensory fibres


- Polymodal nociceptors
- Cold fibres¹
- Physiological
 - Surface stress increased stimuli
 - increased excitability
- Neuropathic firing
 cold fibres¹

Lid margin sensory fibres?

1. Belmonte Gallar IOVS 2011, Vol. 52, 3888


De Paiva Pflugfeldedr 2004

the source of symptoms in dry eye

- Lack of a powerful association between a biomarker and dry eye symptoms at diagnosis should not discourage its use to track the efficacy of a f drug,
- particularly where it reflects a causal hypothesis or could provide proof of principle of drug action

Innervation of the Eye Sensitivity varies over the lids and ocular surface

Tissue sampling - variables affecting measurement

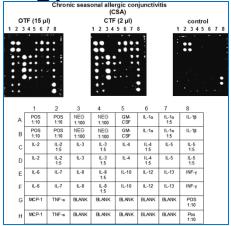
Epithelial Cell Samples

- Impression cytology
 - Instant, regional sample of surface cells
- Brush cytology
 - Global sample
- Analysis
 - Immunocytochemistry
 - Flow cytometry
 - HLA-DR; mRNA; cytokines; transmembrane mucins
- Standardisation is the key optimize techniques to enhance repeatability.

Diomantor ratios in single samples

Molecular Biomarker Technologies

- Electrophoresis: 1D; 2D gels
- ELISA sandwich
- Protein arrays (beads, blots)
- Western blot
- LC-MS
- SELDI/TOF
- MALDI/TOF
- LC MALDI
- LC-MS/MS
- iTRAQ proteomics


 Bioinformatics – protein networks.

Charlie Bead Assay Microwell and membrane antibody Arrays

- R Sack
- CYTOKINES
- IL-1α; IL-1β; 2; 4;
 5;6;8;10;
 12P70;13;15;17;23
- INF γ ; TNF α ; TNF β
- CHEMOKINES
- Eotaxin; GROα; I-309;
 IL-8; IP10; MCP-1,2;
 RANTES; TARC
- ADHESION molecules
- ICAM-1, 3; VCAM-1;
- E-,L-,P- selectin,

- **OTHER** molecules
- Soluble receptors: IL-1RI, II; IL-2R, γ; IL-4R; IL-6R; IL-6R; IL-13Ra1; TNF-R1; TNF-RII;
- Sgp 130; gp340
- α2-M

Candidates: Chemokines in Dry Eye: Th-1 -dependent inflammation Yoon 10VS 51 643 2010

Chemokine type **CXC** [α] **CXXXC** [δ] **CC** [β] **C** [γ] Control **ELR** ELR 2.86 3.30 IFNγ 86.88 6.96 00 10² CXCL9 [MIG] **₽**10 CXCL10 [IP-10] _BNon-Sjogren[®] DE CXCL11 [I-TAC] **Receptors** CXCR 1 **CXCR 3 & 5 CCR** 3 & 4 ≝10³ and 2 **T**-cells Ē 10 C04. PMNS NK cells **Recruits** c Sjogren¹⁰DE⁰³ 810 <u>ڪ</u> 1 8 Th-1 related Th-2 related 10¹ 10² 10³ CXCR3, Fluorescence Intensity 10^{0} 104 inflammation inflammation

Candidates: Chemokines in Dry Eye Th-1 -dependent inflammation Yoon 10VS 51 643 2010

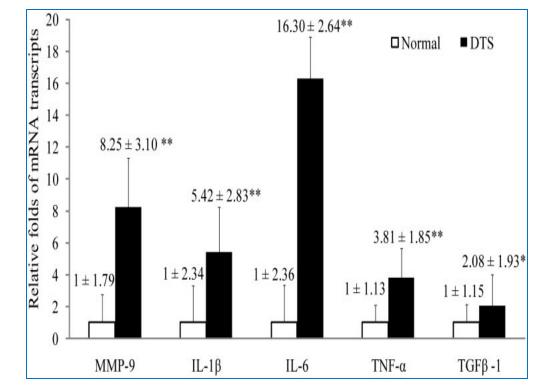
- Capillary tears: ELISA;
 CIC flow cytometry.
- Increase in:
 - IFNγ -inducible
 ELR⁻ CXC
 chemokines in DE
 tears. CXCL 9, 10
 esp 11, and
 - CXCR3+ Th 1 type cells in conj.
 epithelium.

- CXCR3⁺ CD4⁺ conj. cells main effectors of lac. and conj. epithelial damage?
- CXCL 11 levels correlated with
 - low basal Schirmer,
 - low tear clearance,
 - kerato-epitheliopathy,
 - reduced goblet cell density.

Candidates: Cytokine profiles in Dysfunctional TS

- Subjects: 30 DTS; 14 control
- 2-eye, pooled 0.5 μl tear capillary samples
- Luminex Bead array

- These cytokines & MIP-1α correlated with DEWS severity grade:
- IL-6 correlated with severity of symptoms and signs
- EGF levels correlated with the Schirmer value and inversely with corneal staining.


Candidates: Cytokine profiles in Dysfunctional TS

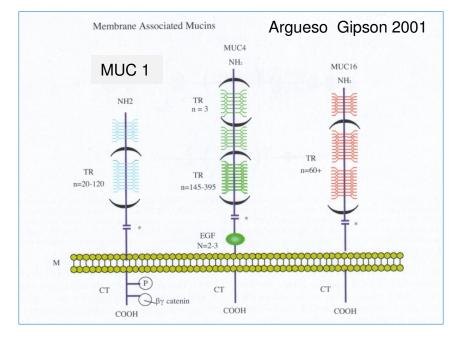
- Subjects: 30 DTS; 14 control
- 2-eye, pooled 0.5 μl tear capillary samples
- Luminex Bead array

- IFNγ / IL-13 ratio 1 in DTS
- IFNγ a marker for Th-1 inflammation and IL-13 for Th-2 inflammation
- The ratio correlates with goblet cell loss and metaplasia in DE model

Candidates: MMP9 in Dysfunctional TS Chotikavanich et al. 2009

- Subjects: 19 DTS;
 16 control (+subset)
- 2-eye, pooled 0.5 µl tear capillary samples
- Tear immunoassay, CIC RNA real-time PCR

Candidates: MMP9 in Dysfunctional TS Chotikavanich et al. 2009

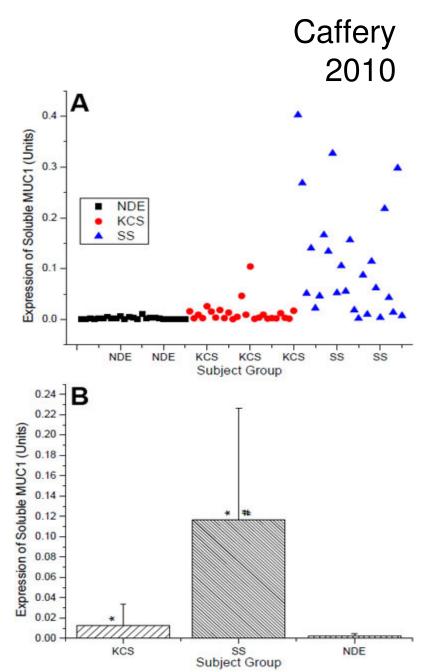

- Tear MMP9 activity 1 in Also correlates with:
 - DTS patients; correlated with:
 - Increases in -IL-1β; IL
 6 ; TNFα AND TGFβ1
 CIC epithelial transcripts.
 - Clinical severity
 controls = 8.4 pg/ml
 DTS grade 4 = 381.2
 pg/ml P<0.001]

- Surface stain; confocal epithel. score; surface irregularity; low contrast sensitivity.
- No corrln with BUT.
- but -MMP9 also increased in patients with MGD and with SS [Solomon 2001 IOVS 42 2283] . and proMMP9 is increased in rosacea [Afonso 999 40 2506; Sobrin IOVS 2000, 41 1703]

Candidates: tear and membrane bound MUC1

Caffery 2010

- The trans membrane mucin MUC 1 is a key component of the ocular surface glycocalyx.
- Cleavage of the exodomain releases soluble MUC1 into the tears.



Ocular surface mucins are: MUC1, MUC2, MUC4, *MUC5AC, MUC7, MUC13, MUC15, MUC16, and MUC17.*

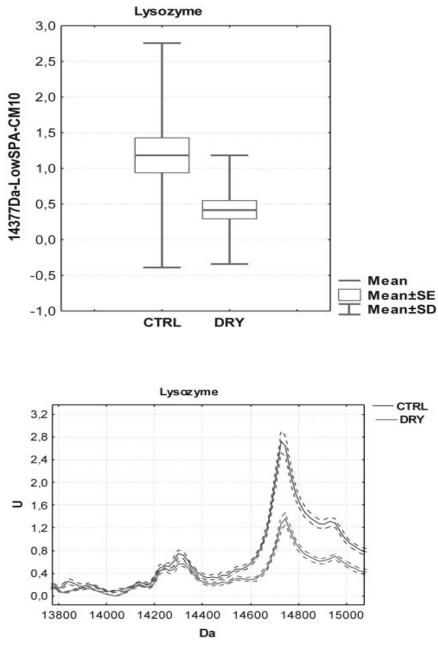
Candidates: tear and membrane bound MUC1

- Subjects: 25 primary SSDE; 25 NSDE; 26 controls
- Eye wash and pooled CIC samples
- Tear MUC1 and MUC1 expression highest in SSDE. Tear MUC1 also higher in NSDE

Candidates: tear and membrane bound MUC1

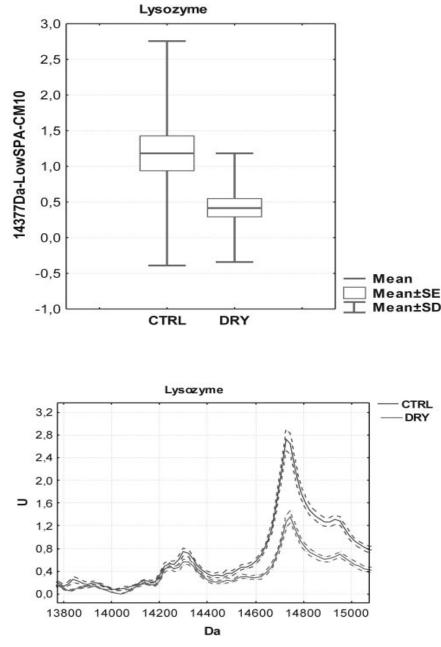
Corrales 2011

- Subjects: 38 NSDE; 43 controls.
- Individual CIC samples

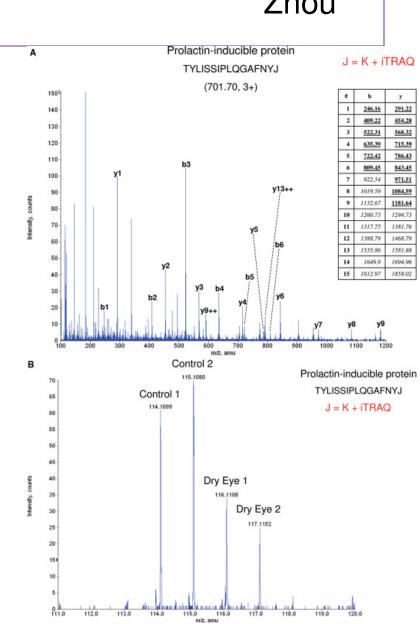

- Expression of MUC 1, 2, 4 and 5AC lower in NSDE
- Using MUC1 expression
 in dry eye diagnosis:

DR_{12.5} = 83.3 %

• Validated in additional control and DE groups.


SELDI-IOF-MS Protein Chip Array in dry eye diagnosis

- Focus on Mass < 14 KDa.
- Multivariate discriminant analysis used to identify 50 peaks differing between ADDE and normals


SELDI-IOF-MS Protein Chip Array in dry eye diagnosis

- Focus on Mass < 14 KDa.
- Multivariate discriminant analysis used to identify 50 peaks differing between ADDE and normals
- Further analysis revealed a cluster of 7 polypeptides
- •GDrmeye detection rate

iTRAQ technology with 2D-nanoLCnano-ESI-MS/MS Zhou Proteome Res 2009

- Subjects: 56 DE: Symptoms+; Sch ≤10 mm; FBUT ≤ 10s; Cr Stain >2 Oxf
- 40 control
- 10 mm Schirmer strip sample
- 93 tear proteins identified, 10 differentially expressed

iTRAQ technology with 2D-nanoLCnano-ESI-MS/MS Zhou

Proteome Res 2009

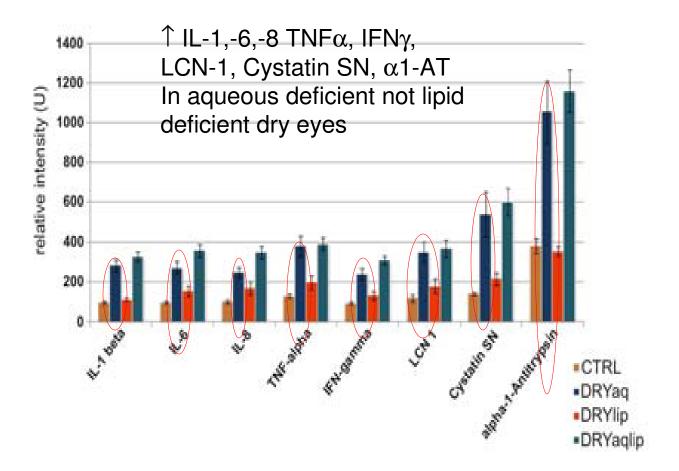
- 6 up-regulated proteins,
- α-enolase,
- S100 A4 and
- α-1-acid glycoprotein 1,
- S100 A8 (calgranulin A),
- S100 A9 (calgranulin B),
- S100 A11 (calgizzarin)
- 4 down-regulated
- lactoferrin and lysozyme.
- prolactin-inducible protein (PIP),
- lipocalin-1

Diagnosis with a 4 protein biomarker panel:

DR₁₀: 91%

- 3 proteins:
- α-1-acid glycoprotein 1,
- S100 A8 (calgranulin A),
- S100 A9 (calgranulin B),
- Correlated with severity

iTRAQ technology MGD and Dry Eye


Tong et al. 2011

- Subjects: 24 DE: Symptoms+; Sch ≤10 mm; FBUT ≤ 10s; Cr Stain >2 Oxf;
- MGD severity scale 0-3
- 18 control
- Schirmer strip sample

- Calgranulin A and B ratios correlated with:
- MGD severity and
- **Symptoms**: Redness; transient blurring
- Lipocalin-1 was associated with heaviness of the eyelids and tearing
- "MGD may independently contribute to the symptoms of dry eye patients".

Cytokines - Antibody Microarray Aqueous- and lipid-deficient Dry Eye

- Subjects:
- 35 DRYaq;
- 36 DRYLip;
- 34 mixed
- 38 Controls.
- Eluted Schirmer strips
- Antibody microarray Boehm IOVS 2011

Recommendations

• Establish:

- Rigorous criteria for each phenotype
- Validated
 Questionnaires
- Measures of severity
- Optimize tissue sampling
 - nano volumes; cell snapshots
- Select biomarker technology with low variance in field

- Apply to broad population samples with dry eye and other ocular surface disease.
- Establish cut offs.
- Validate key
 biomarkers or panels
- Refine diagnostic and severity criteria

Thank You for your Attention