

Prevention of corneal graft rejection

Clinical view

Per Montan, MD, PhD St Erik Eye Hospital, Stockholm, Sweden

0.5 mm. Cells express HLA I

Trachoma

J U B I L E U M 1990 – 2010

Aims of keratoplasty

- Restore a clear visual axis.
- Achieve 20/40 or better VA
 65% do at 2 yrs (Br J Ophthalmol 2002:86: 174 - 80)

JUBILEUM 1990–2010

Reasons for keratoplasty 1

Endothelial failure – INCREASING!!!

Keratoconus - DECREASING?

J U B I L E U M I 9 9 0 – 2 0 I 0

Corneal cross-linking - halting keratoconus?

J U B I L E U M 1990 – 2010

Reasons for keratoplasty 2

• Regrafts - INCREASING

• Scar (following infection, trauma)

JUBILEUM 1990–2010

Traditional penetrating keratoplasty (PK)

Estimated frequency of keratoplasties, Europe

EEBA statistics 2008
 4 in 100 000

<u>s:t eriks</u> Ögon

SIUKHUS

990-2010

- Swedish Cornea Registry 2010
 6 in 100 000
- Waiting for an operation in Sweden
 6 in 100 000
- US frequency
 10 in 100 000

Success = a clear graft

	1 yr	5 yr	10 yr
Kidney ¹	91%	89%	79%
Cornea ²	93%	86%	70%

Notes:

- 1. Adult first renal transplant 1999-2001
- 2. First penetrating keratoplasty

(Data from UK Transplant Activity Report, August 2007)

Decay of endothelial cells and rejection

1 yr5 yr10 yrNone90%81%71%

≥1 episode 72% 49% 34%

(Data from Australian Corneal Graft Registry Report, 2007)

JUBILEUM 1990–2010

Rejection major threat to transplant survival!!

"Immune privilige" – a misconception

 Keratoplasty induces: APC activity (Langerhans and macrophages)
 Clonal expansion of CD4+ T cells
 Lymph- and hemangiogenesis

15% rejection (usually reversible) at 2

yrs.

Cellular origin in full thickness transplants

 Mixture of donor and recipient cells for > 10 yrs
 post-op (Iovs. 2009;50:2673-8)

Topical steroids – backbone of R_x

- Dexamethasone or prednisolone 7 12 months. Lack of RCTs!!!!
- The best regime NOT defined

 (12 vs. 6 months better, (Am J Ophthalmol 2007; 144:318 19)
 (100 methalmol 100 methalmol

• Value of contd. low-dose R_x?

Risk factors for rejection

- Indication (prev. trauma, infection, iatrogenic endothelial failure, regraft)
- Co-morbidity (glaucoma, infl disease)
- Vascularised recipient bed
- Young age of recipient (pediatric keratoplasty)
- PREVIOUS REJECTION
- % of high-risk grafts among operated?

How to deal with highrisk grafting!

- HLA Class I or II matching?
- Systemic immunosuppression?
- Add-on topical R_x?

<u>s:t eriks</u> Ögon

SIUKHUS

J U B I L E U M 1990 – 2010

Tissue matching

- Contradictory results.
- HLA Class I matching beneficial
- HLA Class II matching even detrimental?
- 3% of EEBA corneal grafts are tissue matched
- 5 year on-going study in the UK enrolling 1200 pts *at risk*

Oral CsA?

S:T ERIKS

<u>ÖGON</u> siukhus

990-2010

Long-term R_x may be effective

• Oral Mycophenolate mofetil? Equal to CsA

• Oral Tacrolimus? Relatively effective

• <u>Lack of protocols combining 2</u> <u>immunosuppressants!!!</u>

Added immunosuppression

• **Topical CsA?** *At best = steroids.*

S:T ERIKS

ÖGON siukhus

990-2010

• **Topical Tacrolimus?** *Potency > steroids?*

 Both may replace steroids in IOPresponders. Add-on benefit? No licensed product for ocular use.

J U B I L E U M I 9 9 0 – 2 0 I 0

RCT. High-risk grafting I

- Observer masking.
- Standard R_x with topical steroids.
- Add-on regimen studied.
- Active Comparator
- Avoid heterogenous populations!

RCT. High-risk grafting II

S:T ERIKS

<u>ÖGO</u>N siukhus

990-2010

 Efficacy endpoints: Rejection episodes within 2 - 3 yrs Clear graft Vascular activity Visual Acuity Pachymetry and ECD may be of value VF questionnaire

 Safety variables: Ocular (surface, IOP) Systemic (hematology, liver, kidney)

IUBILEUM

"Corneal clarity"...

Scheimpflug imagery (JCRS 2010;36: 2105-2114)

J U B I L E U M 1990 – 2010

Slit lamp digital photos of neovessels

Other ways to avoid rejections

Lamellar grafting

• Keratoprosthesis

• Biosynthetic cornea

J U B I L E U M I 9 9 0 – 2 0 I 0

Anterior lamellar keratoplasty

- DALK replaces anterior cornea only
- No endothelial rejection!!!!!!
- Indications: Keratoconus, stromal dystrophies, non-penetrating scars

J U B I L E U M I 9 9 0 – 2 0 I 0

Posterior lamellar keratoplasty

- DSAEK, DMEK replaces endothelium
- Endothelial rejection.
 Frequency < penetrating method?
 Severity < penetrating method!

JUBILEUM 1990–2010

Limbal stem cell deficiency (LSCD)

Very rare conditions (Stevens-Johnson, OCP, aniridia)

Ocular burn

Dry eye – a contraindication to any restoration project

• Abort!

J U B I L E U M I 9 9 0 – 2 0 I 0

Unilateral disease. Autologous stem cell transplantation

Autologous explants

IUBILEUM

Post-op course with recurrence...

J U B I L E U M 1990 – 2010

Allogeneic limbal stem cell transplantation

Post-op improvement

Ex vivo expansion of limbal stem cells

- Migration or separation of LSCs from a small limbal biopsy on a carrier.
- Animal products ususally involved
- Transfer to recipient eye easier AND limited use of autologous eye tissue.
- Cultivation in licensed cell laboratories!

Success of LCS grafting = a stable and avascular surface

- Autologous grafts: 75 100% (free explants = cultivated cells)
- Allogeneic grafts: 30 75%
- Remaining poor vision may be restored with keratoplasty

(R?)CT. Stem cell restoration a

S:T ERIKS

<u>ÖGON</u> siukhus

J U B I L E U M I 9 9 0 – 2 0 I 0 Observer masking. Explant vs. culture? Culture vs. culture? Different immunosuppressive protocols for allogeneic transplants?

J U B I L E U M 1 9 9 0 – 2 0 1 0

(R?)CT. Stem cell restoration b

 Efficacy endpoints at 1 - 2 yrs: Corneal epithelial parameters (vital staining, superficial transparency, regress of vessels). Impression cytology?

VA

Pain, Photophobia VF questionnaire

• Safety (vide supra)

Unmet needs. Summary

- Best topical steroid regime for low-risk grafts.
- Add-on value of topical immunosuppressants and/or anti-angiogenic R_x
- Systemic immunosuppression/ HLA-matching in high-risk grafting and allogeneic stem cell transplants.
- Development of gold standard cultivation of LSCs

