Differences in a biomarker's predictive ability across racial groups

Steve Lewitzky, Novartis Pharmaceuticals

EMA Workshop on Pharmacogenomics: from science to clinical care

October 9, 2012

Overview

- Introduction: Differences in biomarker predictivity across racial groups
- Possible explanations for observed differences
- Resulting challenges
 - Determining the actual reason(s) for observed differences
 - Estimating predictive performance of a biomarker in specific racial groups
 - Classifying prospective drug recipients by racial group
- Key questions to consider

VIEWS EXPRESSED ARE THOSE OF THE SPEAKER AND DO NOT NECESSARILY REPRESENT NOVARTIS' VIEW

Introduction: differences in strength of genetic associations across racial groups

- Not uncommon for strength of genetic associations to vary across racial groups
 - Disease risk
 - Dose level
 - Risk of ADR
- Differences across racial groups can exhibit different patterns
 - Strong association in group A, weaker in group B
 - Association exists in group A, non-existent in group B
 - Association in group A in one direction, association in group B in opposite direction
- Hence, if intent is to use the associated allele as a predictor of a subject's outcome, predictions may be more accurate in one racial group than in another

Possible explanations for differences in marker predictivity across racial groups

- Existence of other unknown risk factors (genes, environmental factors), with frequencies that differ across racial groups
 - May act independently of the identified biomarker, or may interact with it
 - Biomarker may not be found at all in certain racial groups
 - Substantial evidence that HLA alleles interact with other factors to increase risk of ADR or disease
- Identified biomarker does not <u>cause</u> the outcome, but is in linkage disequilibrium (LD) with the actual causal allele
 - Hence, identified allele acts as proxy for the actual causal allele
 - Strength of LD is known to vary across racial groups due to different evolutionary histories
- Combination of the above

Highly challenging to determine the source of racial differences in marker predictivity (1/2)

- Are there additional risk factors, with frequencies that differ between racial groups?
 - Need specific hypotheses re: additional factors
 - Factors must be measured/measurable
 - May be many factors with small individual effects
 - Need for multiple testing adjustment across all factors evaluated
 - Hence, substantial sample size needed within each racial group considered

Highly challenging to determine the source of racial differences in marker predictivity (2/2)

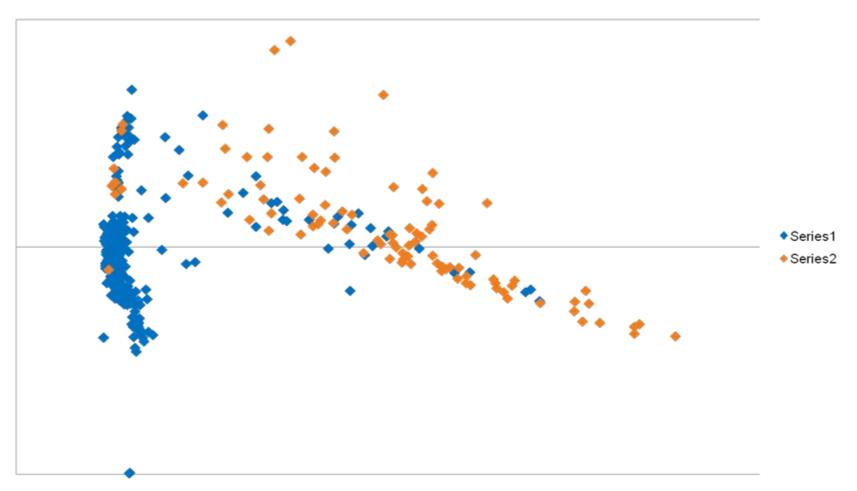
- Is the identified allele in LD with a different, non-genotyped allele that actually causes the outcome?
 - Due to extensive LD throughout the genome, may be thousands of other alleles in LD with the identified allele
 - May be a combination of several less common alleles
 - Restricting search to potentially functional variants generally still results in an excessive number of candidate alleles
 - Lack of knowledge of mechanism
 - Recent publication suggests that most regions of genome could be functional
 - If association is linked to an HLA allele, more likely to be causal
 - Hence, racial difference more likely caused by additional unknown risk factors

Exacerbating the problem: in clinical development, often not possible to compare marker predictivity across racial groups

- Typical clinical trial is predominantly comprised of one or only a few racial groups
 - Other groups may be included but usually in small numbers
- Even if White, Black, and Asian are well represented, many smaller groups/subgroups are unlikely to be
- Difficult to define which populations are truly "distinct"
 - Likely to differ by compound, indication, outcome, biomarker

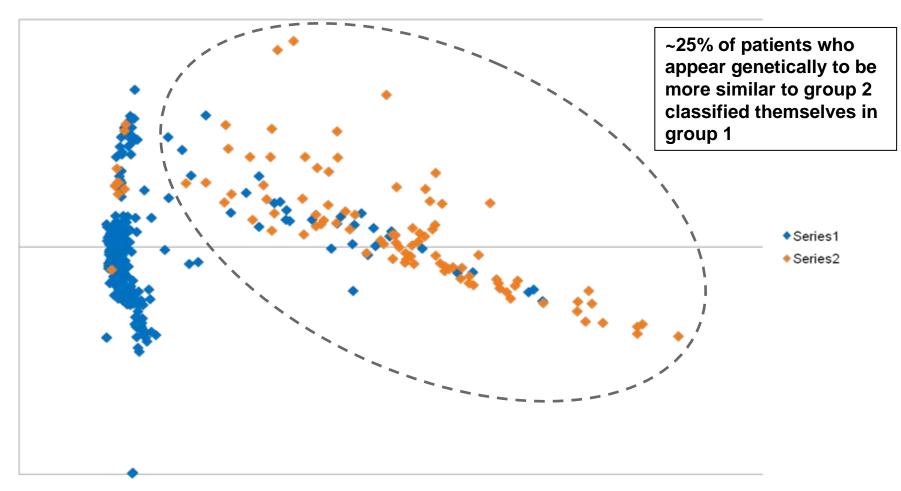
Summary of the problem

- If the factors causing an outcome were known in their entirety, our ability to predict outcome should be similar across racial groups
- 2. In reality, the causal factors are usually only partially known
- 3. Generally, therefore, any identified biomarker is an imperfect correlate of the true causal factor(s)
- 4. In the absence of complete causal information, predictive ability of an identified biomarker may differ across racial groups
- Not possible to reliably characterize a biomarker's predictive ability in undersampled racial groups
- All of the above are likely true of drug safety, drug efficacy, and disease biomarkers



Considerations for approvability of a drug when a biomarker's ability to screen out patients at elevated risk for an ADR is substantially greater in racial group A than in group B (or is unknown in group B)

- Deny approval for all patients
 - Denies group A access to a product that could fill important unmet need
- Grant approval for all patients, subject to biomarker test
 - May place group B at elevated risk for ADR
- Grant approval only for patients in racial group A, subject to biomarker test
 - Ethical concerns
 - Practical concern: To which racial group does a patient belong?
 - Self-reported race often inconsistent with genetic background
 - Patients may not feel comfortable undergoing genetic test to assess racial background
 - How to evaluate drug safety for patients of mixed racial background?


Principal components graph of 2 racial groups and self-reported race

Principal components graph of 2 racial groups and self-reported race

Singer et al., Nature Genetics 42(8): 711-716 (2010)

Key questions to consider

Hypothetical scenario

- Drug X is found to clearly have greater efficacy than alternative therapies currently available
- However, Drug X is not approvable in the broad population due to unacceptably high incidence of a certain ADR
 - Alternative therapies have lower incidence of this ADR
- Retrospective pharmacogenetic study identifies biomarker predicting risk of this ADR
 - Confirmed in prospective study
 - Restricting drug access to biomarker-negative patients (all races analyzed together) would reduce risk of ADR to level comparable to competitors
 - Subgroup analysis reveals that screening would reduce ADR risk sharply in racial group A (incidence would become lower than that of competitors), but only slightly in racial group B (incidence would remain considerably higher than competitors)
 - No other biomarker available to further reduce risk in group B

Key questions (1/2)

- Question #1: What factors could affect approvability and labeling for a drug in the following scenarios?
 - A biomarker reduces risk of ADR to an acceptable level in racial group A but not in racial group B
 - A biomarker reduces risk of ADR to an acceptable level in racial group A, but there are insufficient data in other racial groups to estimate the predictive ability of the biomarker
 - The biomarker is intended to be used to predict drug efficacy rather than risk of ADR

Key questions (2/2)

- Question #2: Are there circumstances under which a drug could be approvable for a specific racial group, or nonapprovable for a specific racial group – with or without a biomarker? If so:
 - Under what circumstances?
 - How would a subject's race be determined in practice?
 - How would patients of mixed racial background be evaluated?

Backup slides

FDA guidance on racial and ethnic groupings for clinical assessment

Racial groups

- American Indian or Alaska Native
- Asian
- Black or African American
- Native Hawaiian or Other Pacific Islander
- White
- Ethnicity
 - Hispanic or Latino
 - Not Hispanic or Latino

