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Heterogeneity in Treatment Effect Estimates

• When treatment effects differ across design stages . . .

– results might be difficult to interpret

– did information ’leak out’ at interim???

• minimum requirement (CHMP guideline, Section 4.2.1)

“ [. . . ] the same careful investigation of heterogeneity and

justification to combine the results of different stages as is

usually required for the combination of individual trials in a

meta-analysis.”
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Investigation of Heterogeneity in Meta-Analyses

Basic procedure

• formal hypothesis test: do the treatment effects differ across

stages?

• if significant, studies are not combined in meta-analysis

• significance levels α = 0.10 or 0.15 common since power of

heterogeneity test generally low
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Applying the MA Procedure to Adaptive Trials

What are the consequences for adaptive trials?
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Heterogeneity Test Confounded by Calendar Time
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An Investigation into Heterogeneity Testing in Adaptive Trials

• situation considered

– two-stage trials with equally sized first and second stage

– equally sized treatment arms

– continuous (normal) outcomes

– significance levels: heterogeneity α = 0.15, efficacy α⋆ = 0.025

• ’successful study’: non-significant heterogeneity test + signifi-

cant efficacy test (probability of success is called power here)
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Relative Loss in Power due to Heterogeneity Test
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• loss in success probability

(power) due to heterogeneity

test

• relative power loss = power of

heterogeneity test

• change in effect as fraction f

of average effect

• effect change could be due

to calendar time effects unre-

lated to interim analysis ( e.g.

learning effects)

• power 1 − β⋆ of efficacy test
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Can the power loss be compensated by larger samples?
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• power of procedure with het-

erogeneity test

• total sample size n

• average trt effect θ = 0.5

• change in treatment effect ∆

• effect change could be due

to calendar time effects unre-

lated to interim analysis ( e.g.

learning effects)
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Motivating the Use of Change Point Methods
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CP method suggests change before IA.

• simulated trial

– 100 patients per stage

– step change after 50 pa-

tients with effect changing

from 0.25 to 0.75

• heterogeneity test: p = 0.01

• change point methods

– search for maximum test

statistics

– adjust critical value

– calendar time confounding

in studies with historic con-

trols (Heuer & Abel 1998)
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Alternative Testing Procedure

• initial heterogeneity test at level α1: if significant, then . . .

• Considering only data of first stage: search for a change point and

test whether it is significant at level α2.1.

– if not, then conclude “change due to IA”

– if yes, then . . .

• Carry out a test comparing treatment effects in the first stage

after the change point and the second stage at level α2.2.

– if (not) significant, then conclude “change (not) due to IA”
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Simulated Probability of “Change due to IA” Conclusion
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Investigation of Calendar Time Effects

• Altman & Royston (1988) suggest use of CUSUM plots

– popular tool in quality control (Grigg et al 2003)

• patient number as predictor in linear model (Senn 2000)

• critical issue in adaptive randomisation

– see e.g. Coad (1994), Hu & Rosenberger (2000)
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What can be learned from meta-analysis?

• investigating heterogeneity: stage vs. patient level covariates

– small number of stages ⇒ investigation of stage-level covari-

ates difficult

– patient level data available in adaptive trials (unlike in publica-

tion based meta-analysis)

– individual patient data: interactions of prognostic factors with

treatment effect (subgroup analyses)

• importance of treatment effect scale: multiplicative vs. addi-

tive model (see Sutton et al 2000 Sec. 3.5.1, or Hand 1994 Ex.6)
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Conclusions and Discussion

• heterogeneity test approach

– leads to great loss and power that cannot be compensated for

by larger sample sizes

– calendar time effects unrelated to IA make matters worse

• alternative approaches allowing for calendar time effects need

more attention

• design: careful consideration and discussion in planning phase
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