Externally Controlled Trials in Oncology

Donna Rivera PharmD., MSc. Associate Director for Pharmacoepidemiology Oncology Center of Excellence US FDA

HMA EMA Workshop June 14, 2024

ECT Overview

ECT Overview

Recently Released FDA RWE Guidances

Real-World Data: Assessing Electronic Health Records and Medical Claims Data To Support Regulatory Decision-Making for Drug and Biological Products

Draft Guidance for Industry, September 2021

Real-World Data: Assessing Registries to Support Regulatory Decision-Making for Drug and Biological Products Guidance for Industry

Guidance for Industry, December 2023

Considerations for the Use of Real-World Data and Real-World Evidence To Support Regulatory Decision-Making for Drug and Biological Products

Guidance for Industry, August 2023

Data Standards for Drug and Biological Product Submissions Containing Real-World Data *Guidance for Industry,* December 2023

Submitting Documents Using Real-World Data and Real-World Evidence to FDA for Drug and Biological Products *Guidance for Industry, September 2022*

Considerations for the Design and Conduct of Externally Controlled Trials for Drug and Biological Products *Draft Guidance for Industry* February 2023

Real-World Evidence: Considerations Regarding Non-Interventional Studies for Drug and Biological Products *Draft Guidance for Industry*, March 2024 RWD Source

Submissions

Design

Considerations for the Design and Conduct of Externally Controlled Trials for Drug and Biological Products *Draft* Guidance for Industry

Definition: An externally controlled trial (ECT) measures outcomes in participants receiving the investigational treatment according to a protocol compared to outcomes in a group of people external to the trial who did not receive the same treatment.

Appropriateness: The suitability of an externally controlled trial design depends on the clinical setting. Consult the relevant FDA review division early in drug development to determine if an externally controlled trial is reasonable.

ECT Rationale

Before selecting an ECT Design

- consider the likelihood that such a non-randomized design would be able to distinguish the effect of a drug
- in many situations, the likelihood of credibly demonstrating the effectiveness of a drug of interest with an external control is low

Factors affecting suitability of an ECT

- heterogeneity of the disease
- preliminary evidence regarding the drug product under investigation
- approach to ascertaining the outcome of interest
- whether the goal of the trial is to show superiority or non-inferiority

ECT Rationale

Context for use

Feasibility Challenges

Ethical Concerns

Questionable Equipoise

ECT Rationale

Context for use

Feasibility Challenges

Ethical Concerns

Questionable Equipoise

Potential Applications

Pediatrics A

8 **Rare Diseases**

 \bigcirc Significant unmet medical need

ğ Molecular subgroups

Under-represented populations

ECT Considerations

FDA

Regulatory Objective

What is the level of evidence needed to demonstrate effectiveness?

- As benchmark, baseline, or natural history study [epidemiology]
- As individual patient-level matched data for formal comparative study [effectiveness]

FDA

Considerations for Assessing Data Comparability

Time Periods Geographic Diagnosis Prognostic Treatment Region Factors Expected variation Standard of care Dose and duration Supportive care Line of therapy • Access to care Availability Concurrent Similarity regimen Index Date Missing Data Loss to Intercurrent Outcome Follow-up events Frequency Ascertainment

Consult with the relevant review division Early and Often

ECT Overview

Study Conceptualization Review

FDA

Externally Controlled Designs

Clinical Scenario: Limited or no randomized studies available

Use of External Controls: Often limited to providing important clinical context; has been used in various applications and considered supportive only

Common Limitations

- Lack of pre-specified protocol to ensure the selection of a comparable patient population; selection bias concerns
- Lack of formal statistical comparisons or statistical methodology not established a priori
- Data Source Appropriateness
 - **Covariate Ascertainment**: Limited information on patient demographic or clinical characteristics
 - **Outcome Ascertainment**: Variance in follow up; outcome misclassification
- Confounding: Concerns with measured, unmeasured, and residual confounding
- Index Date Selection and Immortal Time Bias

ECT Overview

Approach to Regulatory Review of ECTs

Evaluation of an External Control

FDA

Selected characteristics of the disease setting that should be met for EC use

1. The natural history of disease is well defined

2. EC population is **very similar** to treatment group

3. Concomitant treatments that affect the primary endpoint are **not substantially** different

4. Evidence of change in the established progression of disease (e.g. **tumor shrinkage**)

Data must be Fit-for-Purpose

Relevance

includes the availability of key data elements (exposure, outcomes, covariates) and sufficient numbers of representative patients

Reliability

includes data *accuracy*, **completeness. provenance,** and *traceability*

www.fda.gov

FDA guidance for industry, *Demonstrating Substantial Evidence of Effectiveness* for Human Drug and Biological Products, (2019) and Rare Diseases: Common Issues in Drug Development (2019)

Approach to Regulatory Review of ECTs

Eflornithine (DFMO)

Regular Approval on December 13, 2023

- **Indication** To reduce the risk of relapse in adult and pediatric patients with high-risk neuroblastoma who have demonstrated at least a partial response to prior multiagent, multimodality therapy including anti-GD2 immunotherapy.
- **Context** High unmet need in a rare, life-threatening disease
- ClinicalThe efficacy was based on an externally controlled trial comparison of Study 3b and ANBL0032Evidence

Investigational Arm: single-arm trial (Study 3(b), Stratum 1) of 90 treated patients most of whom were previously enrolled on ANBL0032

External Control Arm: National Cancer Institute/Children's Oncology Group-sponsored clinical trial (Study ANBL0032) of 270 patients propensity-score matched to DFMO-treated patients on 11 demographic and clinical characteristics

Strong mechanistic non-clinical data

 Outcomes
 Event-Free Survival
 HR=0.48 (95% CI: 0.27, 0.85)
 HR=0.32 (95% CI: 0.15, 0.70)

Propensity Score Matching

Data Source: Experimental arm of Study ANBL0032 Multi-center, open-label, randomized trial

Propensity Score Matching

- Patients who met the criteria for the comparison and had complete data for specified clinical covariates
- Matched efficacy populations(1:3) for the primary analysis included
 - 90 treated patients (DFMO)
 - 270 control patients (ANBL0032)

Clinical Characteristics in Propensity Score Model
Age at Diagnosis (years)
Sex
MYCN Status (exact match)
Stage at Diagnosis
End of Immunotherapy Overall Response
Duration of Immunotherapy in days
Race
Pre-Transplant Response
Single vs. Tandem Transplant
Days from Transplant to Start of Immunotherapy
Days from Diagnosis to End of Immunotherapy

ODAC Discussion Summary

Given the primary evidence of efficacy was from an ECT and available confirmatory data was from non-clinical studies, an ODAC was held in 2023 to discuss effornithine (DFMO)

Uncertainties

- Potential biases due to nonrandomized study design
- Limitations of animal models

Strengths

- Large effect size
- Robust statistical analyses
- Strong preclinical models

Discussion: highlighted challenges of application, feasibility of RCT

Committee voted (16 Yes – 4 No) that there was sufficient evidence to establish efficacy

DFMO Regulatory Context

- FDA
- 1st oncology approval relying on an **externally controlled trial** as primary clinical data to support substantial evidence of effectiveness

Clinical Context

Rare, life-threatening cancer with high unmet need

Feasibility concerns regarding successfully conducting new RCT

Evidentiary package unique and each component was essential for approval

High-quality external control arm in a comparable population (matched on >10 clinical characteristics)

Consistent estimation of the treatment effect through numerous sensitivity and supportive analyses

Manageable safety profile for oncology product

Strong nonclinical mechanistic data

• **RCTs remain strongly preferred** development approach to demonstrate effect on a time-to-event endpoint, even in rare cancers

Regulatory Insights

FDA

- With **rare exception**, RCTs are required to assess the effect of a drug on a time-to-event endpoint (e.g., EFS, OS)
 - Randomization balances known and unknown prognostic factors
- Often the likelihood of credibly demonstrating the effectiveness of a drug with an ECT is low and sponsors should choose more suitable designs
- Fit-for-use data can be a rate limiting factor
 - Establishing that data for an external control is appropriate for formal comparison is a first step often not reached in drug development programs considering ECTs
- When reliable objective responses are not expected, development plans should move quickly to a randomized trial

Acknowledgements

Oncology RWE Program

Donna Rivera Paul Kluetz Catherine Lerro Fatima Rizvi

TEAM FoRWD comprises FDA scientists with expertise in pharmacoepidemiology, hematology and oncology, epidemiology, biostatistics, and regulatory science to evaluate opportunities for RWD in regulatory contexts that can complement our understanding of medication risks and benefits for patients.

OCE Leadership

- Richard Pazdur
- Paul Kluetz
- Marc Theoret
- Tamy Kim

OOD and OB

- Amy Barone
- Diana Bradford
- Martha Donoghue
- Nicole Drezner
- Elizabeth Duke
- Gautam Mehta
- Pallavi Mishra-Kalyani
- Arup Sinha
- CDER CBER
- CDRH