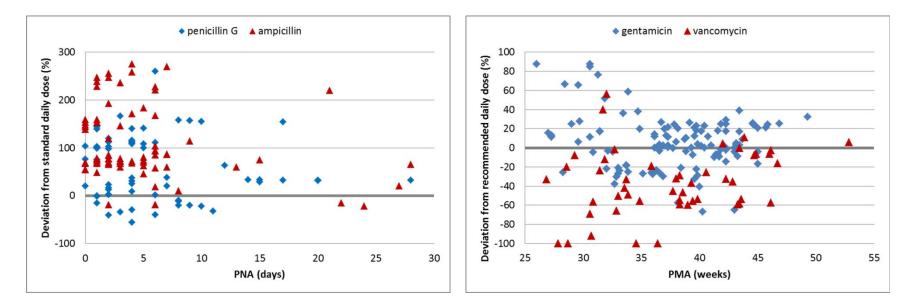
Extrapolation in antibacterial agents

Irja Lutsar – University of Tartu, Estonia Maria Fernandez Cortizo- Medicines Agency, Spain EMA meeting, 30.09.2015

Glossary


- PIP: Paediatric Investigation Plan
- AHOM: acute haematogenous osteomyelitis
- CAP: community-acquired pneumonia
- cIAI: complicated intra-abdominal infections
- cSSTI: complicated skin and soft tissue infections (currently: acute bacterial skin and skin strcuture infections, aBSSSIs)
- cUTI: complicated urinary tract infections
- NP: nosocomial pneumonia
- PID: pelvic inflammatory disease
- VAP: ventilator-associated pneumonia

- MCS: Monte Carlo simulation
- LOS late onset sepsis

Deviations in dosing of antibiotics in neonates: ESNEE data (89 EU NICUs)

Penicillin and ampicillin

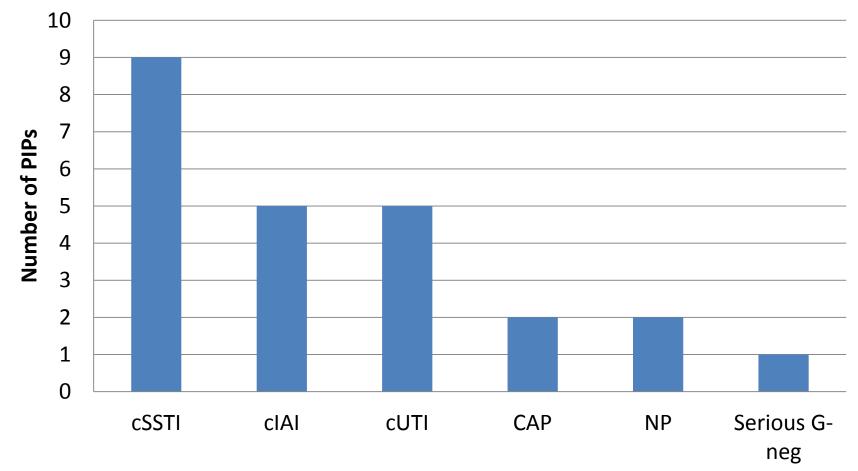
Vancomycin and gentamicin

If well-tolerated – doses are in general higher than recommended If toxicity – doses are in general lower than recommended

Reference: Blue Book

Metsvaht et al. BMC Pediatr. 2015 Apr 16;15:41

PIPs of antibacterial agents

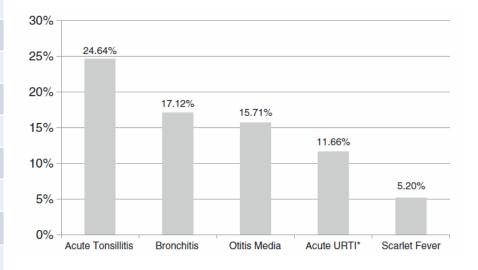

- 16 agreed PIPs (with EMA Decisions)
 - excluding antibacterial agents for topical use, for inhalation (e.g. cystic fibrosis), for *C difficile*associated diarrhoea, and for eradication of *H* pylori
- Full waiver granted for delafloxacin for the treatment of cSSTI
 - New PIP expected for CAP (if this indication is pursued in adults)
- 4 PIPs withdrawn
- 2 currently under review

EMA Decisions on antibiotic PIPs (n = 16)

Active substance	PIP	Indications covered	Waiver	
	number			
Ceftaroline fosamil	769	cSSTI, CAP	No	
Ceftobiprole medocaril	205	cSSTI	No	
Ceftazidime/Avibactam	1313	cIAI, cUTI, NP, serious G ⁻	No	
Ceftolozane/Tazobactam	1142	cIAI, cUTI	No	
Ceftriaxone/Sulbactam	1568	Extrapolation all adult indications, PK neonates	No	
Doripenem	15	cIAI, cUTI, NP	No	
Meropenem	898	Sepsis, Meningitis (bacterial)	Above 3 mo	
Tigecycline	120	cIAI, CSSTI	Under 8 years	
Eravacycline	1555	cSSSTI, cUTI	Under 8 years	
Telavancin	239	cSSTI, HAP	No	
Dalbavancin	16	cSSTI	No	
Oritavancin	1270	cSSTI	No	
Vancomycin	1311	Late-onset sepsis	Above 3 mo	
Solithomycin	1581	Gonococcal disease, CAP	No*	
Moxifloxacin	288	PID, cIAI	Yes*	
Tedizolid	1379	cSSTI	No	

*PID: only in adolescent females; gonococcal disease: only in adolescents

Indications covered in agreed PIPs


OTHER: Gonococcal disease: adolescents; PID, LOS, BM, chronic OM, bone&joint infection, bacterial sepsis, perioperative infections

Indications for antibiotic use in paediatrics

AB use in 32 EU paediatric hospitals

Characteristics	n	%	n	%
	treatment		prophylaxis	
respiratory	127	29	42	24
systemic	67	15	13	7
ear, nose, throat	60	14	10	5
gastrointestinal	48	11	31	18
urology	41	9	16	9
SSTI&bone	35	8	9	5
CNS	22	5	8	4
undefined	17	4	34	19
еуе	6	1	1	1
CVC	5	1.2	5	2
gynaecology	1	0.2	2	1

AB use in outpatient in Germany

<u>J Antimicrob Chemother.</u> 2010 Oct;65(10):2247-52 <u>Eur J Pediatr.</u> 2013 Jun;172(6):787-95

Indications in which antibiotics are studied are not the most common in paediatrics

Pathogen and Antibiotic Class	EARS-Net	ARPEC
Gram-negative pathogens		
Escherichia coli		
Aminopenicillins*	57.2%	67.9% (62.6-73.1)
Third generation cephalo- sporins	11.9%	12.9% (9.3–16.5)
Aminoglycosides*	11.3%	14.6% (10.9 - 18.4)
Fluoroquinolones*	23.0%	13.4% (9.8-17.0)
Carbapenems*	0.1%	0.6% (0.07-2.1)
Klebsiella pneumoniae		
Third generation cephalo- sporins	31.6%	32.5% (25.5-40.2)
Aminoglycosides	27.6%	31.8% (24.8-39.3)
Fluoroquinolones*	30.7%	17.9% (12.4-24.5)
Carbapenems*	13.5%	6.5% (3.3–11.4)
Pseudomonas aeruginosa	2010/0	
Piperacillin (± tazobac- tam)*	17.6%	36.0% (27.1–45.7)
Ceftazidime*	14.8%	25.8% (18.5-34.3)
Aminoglycosides*	19.3%	27.3% (19.8-35.9)
Fluoroquinolones	23.1%	23.4% (16.4-31.7)
Carbapenems*	20.5%	32.8% (24.7-41.8)
Gram-positive pathogens		
Staphylococcus aureus		
Methicillin resistance	21.2%	16.4% (12.7-20.8)
Streptococcus pneumoniae		
Penicillin nonsusceptibility	10.8%	13.4% (7.9 - 20.9)
Macrolide nonsusceptibil- ity*	15.3%	33.1% (24.8–42.2)
Enterococcus faecalis		
High level gentamicin	30.5%	29.5% (21.0 - 39.2)
Enterococcus faecium		
Vancomycin	8.3%	9.0% (3.7-17.6)

AB resistance is similar in children and in adults among Grampositives but differs among **Gram negatives**

> EARS-Net – adults ARPEC - children

For ARPEC, the proportion of resistant isolates is shown with the 95% confidence interval.

*Difference between EARS-Net and ARPEC resistance percentages is statistically significant (P < 0.05).

Pediatr Infect Dis J. 2015 Jul;34(7):734-41

Extrapolation of efficacy

Concept Paper on extrapolation of efficacy and safety in medicine development (EMA/129698/2012)

The primary rationale for extrapolation is to avoid unnecessary studies in the target population for ethical reasons, for efficiency, and to allocate resources to areas where studies are the most needed.

Alternatively, in situations where the feasibility of studies is restricted, extrapolation principles may be applied for rational interpretation of the limited evidence in the target population in the context of data from other sources

Possibilities for extrapolation

- Extrapolation efficacy from studies conducted in adults
 - Adult drug exposure = paediatric drug exposure
- PK/PD-based extrapolation

 PTA modelled in paediatric patients

Extrapolation efficacy from studies conducted in adults

Assumptions

- Infecting organisms in adults and children are the same
- Disease process in adults and children is the same

• Extrapolation

- PK studies should be conducted
- Efficacy will be extrapolated from adult studies provided that the exposure is the same (AUC)
- Safety studies should be conducted
 - Is the safety in children different of that in adults?

• Problem

Paediatric and adult indications for antibiotic use are different

PK/PD based extrapolation: PTA modelled in paedaitric patients

• Assumption

- Infecting organisms and their susceptibility are different
- Disease process is different

Extrapolation studies

- PK studies in target population
- MCS using the most likely microorganism with the highest susceptible MIC value and maximal PD index
- T>MIC 100% + MIC of intermediately resistant microorganims (+ CNS infection)

Problem

- Do all patients need so high doses?
- Safety is of concern and should be tested

Pip/tazo dosing in neonates

Regimen	GA (wks)	PMA (wks)	PNA (days)	Dose (mg/kg)	Dose interval (h)	Infusio n (h)	
Neofax		≤29	0–28	100	12	0.5	200mg
		≤29	>28	100	8	0.5	
		30–36	0–14	100	12	0.5	
		30–36	>14	100	8	0.5	
		37–44	0–7	100	12	0.5	200mg
		37–44	>7	100	8	0.5	0
		>45	(All)	100	8	0.5	
Harriet Lane	≤36		≤7	75	12	0.5	
	>36		≤7	75	8	0.5	
	≤36		>7	75	8	0.5	
	>36		>7	75	6	0.5	
PMA-based (extended infusion)		≤30		100	8	4	
		30–35		80	6	3	
		35–49		80	4	2	
PMA-based (short infusion)		≤30		100	8	0.5	300mg
		30–35		80	6	0.5	Ū
		35–49		80	4	0.5	480 mg

Antimicrob Agents Chemother. 2014 May;58(5):2856-65

Exceptions in children – extrapolation may not be possible

- CAP 15% of cases caused by bacteria or virus+bacteria, remaining by viruses (N Engl J Med 2015;372:835-845)
- VAP mostly caused by *S.aureus*, *P.aeruginosa* is very rare
- AOM is not an adult disease
- GABHS tonisilitis efficacy in children worse than in adults
- Neonates
 - mainly infection without source (neonatal sepsis)
 - are immunotolerant and require higher AB exposure than adults

Types of clinical development in agreed PIPs

- Site-specific indications (cSSTi, cIAI, cUTI, NP) and similar epidemiology in both populations:
 - Extrapolation of efficacy from adults plus PK (dosing recommendations) and safety study(ies) with descriptive efficacy
 - If feasibility issues: consider need/feasibility for specific PK study plus full extrapolation of efficacy (provided safety data are available from studies in other indications): Ceftazidime/Avibactam (CAZ/AVI) for nosocomial pneumonia caused by Gram⁻ microorganisms
 - CAP: same approach as for other site-specific indications;
 - however, epidemiology of the disease is different in the paediatric population
 - CAP is not a rare disease
- Indications specific of children (e.g., AOM, GABHS tonsillitis, CAP?): PK (dosing recommendations) plus efficacy/safety study
- Indication in adults based on a limited clinical program, e.g.,
 - Serious Gram negative infections with limited therapeutic options (CAZ/AVI)
- Note!No fully powered efficacy studiesNo paediatric specific indications AOM, GABHS tonsillitis

Neonates: Bacterial infections

• Mostly neonatal sepsis (about 50% of cases)

- < 1500 g of all hospitalised babies
 - EOS 1,5% 2%
 - LOS 21% 25%
- In patients with risk factors
 - EOS 4,9%
 - LOS 26%

Other infections

- Pneumonia
- UTI unrelated
- Meningitis -
- Osteomyelitis -
- Endocarditis -
- cSSTI

7-32% of HAI

29% device related and 77% of

3% of all infections 1.5% of all infections 5-12/100,000 newborns ???

Early Human Development 88S2; 2012: S69–S74 Acta Paediatr. 2010; 99: 665-72 BMC Infect Dis. 2015; 15: 152

Neonatal studies and PIPs

- Objective: PK and safety study in neonates (from birth to less than 3 months of age) in patients with LOS
 - <u>13/16 agreed PIPs</u> either as a single study or as separate studies
 - Single or multiple dose PK study (depending on the agent) and safety study
 - <u>Add-on/combination studies</u> (need to cover meningitis) given the immaturity of their immunological system, particularly in preterm neonates
 - No waiver except tetracyclines and quinolones
- In neonates undergoing lumbar puncture for clinical care measurement of the antibacterial agent in CSF is encouraged

Issues for discussion: general (1)

- -Which is best methods for extrapolation adult drug exposure or paediatric PTA?
 - Paediatric PTA higher doses and exposure than in adults
- Do we need determination of antibiotic concentrations at the site of the infection?
 (e.g., epithelial lining fluid, cerebrospinal fluid etc.) or can we extrapolate?
- Are the PK characteristics dependent on the indication?
 - In adults dosing is first defined in healthy subjects

Issues for discussion (2)

• Site-specific indications:

- CAP: epidemiology very different from that in adults. Can we extrapolate?
- NP/VAP: disease is rare, the underlying conditions are different, infecting organisms are different- can we extrapolate efficacy from adults and safety from other indications
- Paediatric development in case of a limited clinical program in adults (serious infections with resistant organisms)
 - on a case-by-case basis BUT
 - no need to enrich paediatric studies with multidrug-resistant microorganisms
 - assumption is that PK would be the same and that safety can be extrapolated for a standard study performed in a site-specific indication

Issues for discussion: neonates (2)

- Estimation of first dose: allometric scaling + maturation function OR physiologically-based PK modelling OR both?
 - Is delay in neonatal studies needed/justified?
- Disease is specific, disease process and outcome of the therapy are unlikely or unknown to be comparable between adults and children
- Is there a need for a higher PK/PD index (AUC/MIC, T>MIC) than in immunocompetent adults?
- Is there a need for higher dose due to potential risk of meningitis

Issues for discussions (4)

• Immunocompromised patients:

- Data on bacterial eradication usually available in animal models of infection (e.g., murine thigh-infection model in immunosuppressed rats)
- Efficacy results not always available in immunocompromised adults
- Is there a need for a higher PK/PD index (AUC/MIC, T>MIC) than in immunocompetent adults?

• Cystic fibrosis

No indication in adults but PK is different and antibiotics are needed

• How to deal with uncertainties in the RMP

- Paediatric indication based on full extrapolation (e.g., NP caused by Gram-negative microorganisms)
- Extrapolation of safety across indications (e.g. from cIAI to NP)