

Genomics in patients with Japanese Ancestry

Yoshiaki Uyama, Ph.D. Pharmaceuticals & Medical Devices Agency (PMDA)

Visiting Professor, Graduate School of Medicine, Chiba University Visiting Professor, Graduate School of Medicine, Nagoya University

Examples of PGx implementation -Ethnic differences-

CBZ-induced SJS/TEN & HLA-B*1502

CBZ-induced SJS/TEN & HLA-B*1502

 HLA-B*1502 screening could provide a benefit in countries, in which HLA-B*1502 is relatively prevalent

	HLA-B*1502- positive with alternative medication (N=215)	HLA-B*1502- Negative with CBZ (N=4120)	Estimated historical incidence
CBZ-induced SJS/TEN	0% (0/0)	0% (0/0)	0.23%

Chen P et al, N Engl J Med, 364: 1126-1133, 2011 Chung WH et al, Nature, 428: 486, 2004

 However, CBZ-induced SJS/TEN patients carrying HLA-B*1502 have not been found in Japanese

Mag Biomarker for CBZ-induced SJS/TEN in Japanese

 In Japanese, association with a different allele, HLA-A*3101, has been reported

Ozeki T et al, Human Molecular Genet, 2010

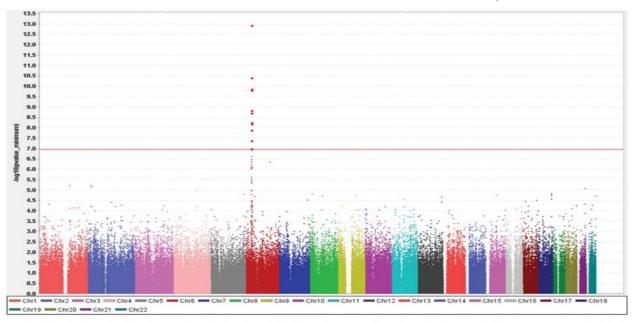


Figure 1. -Log₁₀ P-value plots at the GWAS. Each dot represents P-value obtained from GWAS using 53 patients with carbamazepine-induced cutaneous adverse drug reactions and 882 subjects of a general population in Japanese. The Y-axis represents the -log₁₀ of the minimal P-values calculated by Fisher's exact tests for three models: dominant, recessive and allele frequency models in the case-control association study.

Interestingly, similar results were found in European
 population
 McCormack M et al, N Engl J Med, 364: 1134-1143, 2011

CBZ Label in Japan

貯法:

錠 :室温保存

細粒:防湿、室温保存

使用期限:

包装に表示の使用期限内に使用す

ること

使用期限内であっても、開封後は なるべく速やかに使用すること

向精神作用性でんかん治療剤・躁状態治療剤

処方せん医薬品 (注意 - 医師等の処方せんにより使用すること)

Tegretol®

カルバマゼピン製剤

承認番号	錠100mg : 20300AMZ00826000 錠200mg : 20300AMZ00827000 細粒50% : 21500AMZ00527000		
	錠100mg	錠200mg	細粒50%
薬価収載	1992年 7 月	1992年 7 月	2004年7月
販売開始	1992年 7 月	1966年 3 月	1969年 3 月
再評価結果	-	19754	F6月
効能追加	_	1990年 3 月	

(b) NOVARTIS

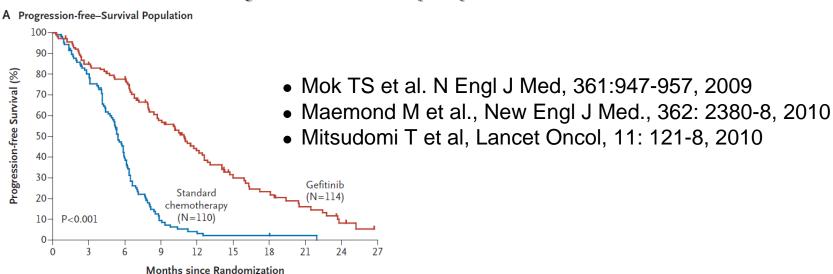
- **(6) 日本人を対象としたレトロスペクティブなゲノム ワイド関連解析において、本剤による皮膚粘膜眼 症候群、中毒性表皮壊死融解症及び過敏症症候群 等の重症薬疹発症例のうち、HLA-A*3101保有者は 58%(45/77)であり、重症薬疹を発症しなかった 集団のHLA-A*3101保有者は13%(54/420)であっ たとの報告がある。⁴⁾
 - 漢民族(Han-Chinese)を祖先にもつ患者を対象とした研究では、本剤による皮膚粘膜眼症候群及び中毒性表皮壊死融解症発症例のうち、ほぼ全例がHLA-B*1502保有者であったとの報告がある。5.6 一方、日本人を対象とした研究において本剤による重症薬疹発症例とHLA-B*1502保有との明らかな関連性は示唆されていない。4

<u>なお、HLA-B'1502アレルの頻度は漢民族では</u> 0.019-0.124、日本人では0.001との報告がある。[™]

- Results of Genome-Wide Association Study (GWAS) in Japanese population
 - HLA-A*3101 is associated with CBZinduced serious cutaneous adverse events including SJS/TEN
- The association with HLA-B*1502 is revealed in Han-Chinese, but not in Japanese

Clinical meaningfulness of HLA-A*3101 on patient selections is still unknown

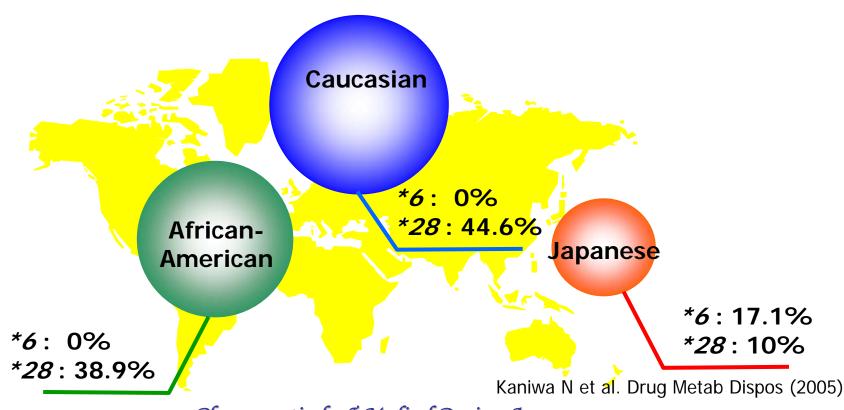
Other Examples


Gefitinib & EGFR Mutation

Higher EGFR mutation rate in Asian population

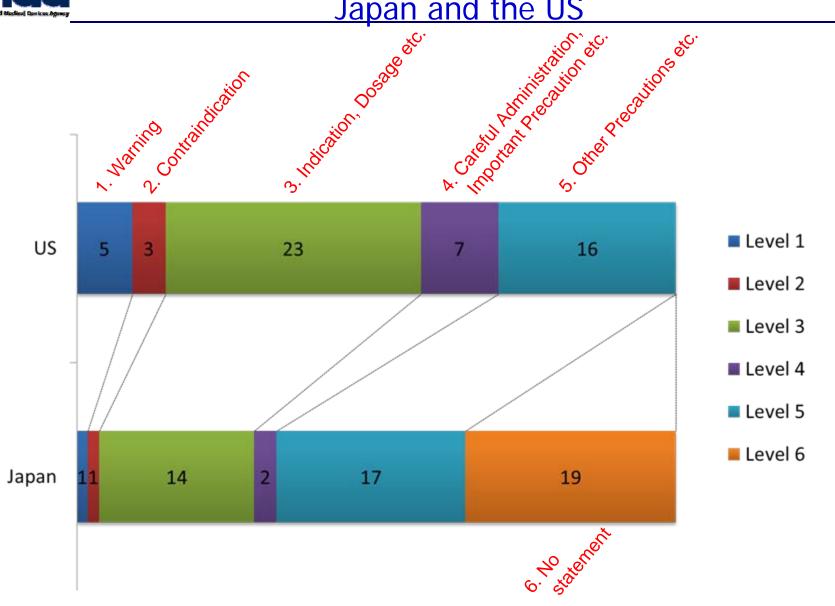
Asian	30–40%
Non-Asian	5-10%

Mitsudomi T eta al., Cancer Sci. 12:1817-24, 2007


 Higher efficacy of gefitinib has been confirmed in non-small cell lung cancer patients with EGFR mutation, mainly in Asian population

Irinotecan & UGT1A1 Alleles

- Higher prevalence of UGT1A1*6 (lower activity) in Japanese
- The Japanese Label includes the information of *6 in addition to *28



Comparison of the label between Japan and US

Comparing grading levels of the contexts between Japan and the US

Otsubo Y et al, Drug Metab Pharmacokinet, 27: 144-151, 2012

*Pharmaceuticals & Medical Devices Agency**

EMA PGx workshop, London, October 7-8, 2012

Examples of grading differences of drug/BM-context between Japan and the US

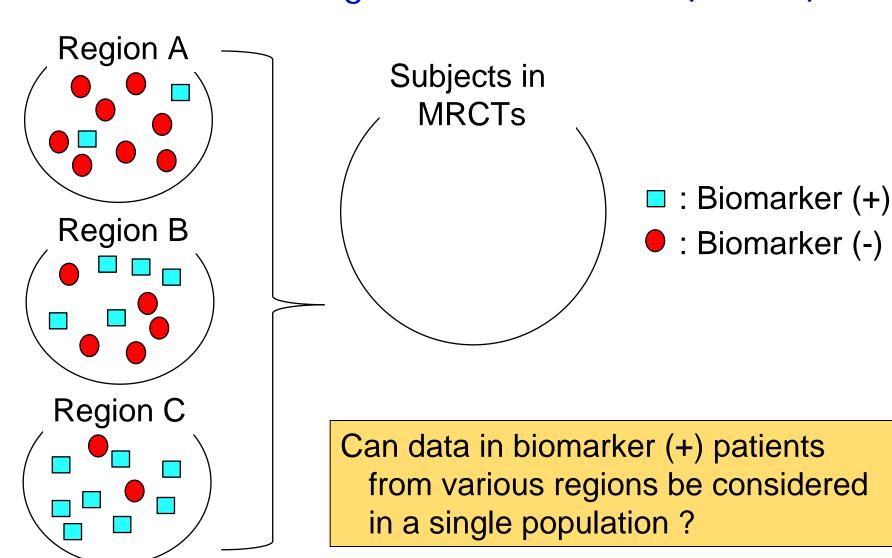
		JAPAN	USA	Possible reason
Warfarin	CYP2C9	Information only (Clinical Pharmacology)	Indication and Usage	Clinical evidence in Japanese
Carbamazepine	HLA-B*1502	Information only (Other precaution)	Boxed Warning	Genetic difference
Capecitabine	DPD	Information only (Other precaution)	Contraindication	Genetic difference Availability of diagnostic agent

Otsubo Y et al, Drug Metab Pharmacokinet, 27: 144-151, 2012

Factors to cause similarities/differences

	Number of contexts with grading difference (%)	Number of contexts without grading difference (%)	P value
Biomarker type			0.0048
ME (n = 30)	24 (80%)	6 (20%)	
PT (n = 18)	6 (33%)	12 (67%)	
Others (n = 6)	3 (50%)	3 (50%)	
Aim of biomarker use			0.0008
Efficacy (n = 21)	7 (33%)	14 (67%)	
Safety (n = 33)	26 (79%)	7 (21%)	
Therapeutic area			0.0025
Oncology (n = 20)	7 (35%)	13 (65%)	
Others (n = 34)	26 (76%)	8 (24%)	
Year of outcome in Japan			0.0104
Before 1993 (n = 18)	16 (89%)	2 (11%)	
1994 - 2003 (n = 11)	6 (55%)	5 (45%)	
After 2004 (n = 25)	11 (44%)	14 (56%)	
Company type			0.21
EU&US-based company (n = 33)	18 (55%)	15 (45%)	
Japan-based company (n = 21)	15 (71%)	6 (29%)	
PGx evidence for the Japanes	e in Japanese Pls		0.0002
Data on clinical endpoints (n = 13)	2 (15%)	11 (85%)	
PK data only (n = 6)	3 (50%)	3 (50%)	
None (n = 35)	28 (80%)	7 (20%)	

Otsubo Y et al, Drug Metab Pharmacokinet, 27: 144-151, 2012



Challenges in PGx-guided drug development & Ethnic factors

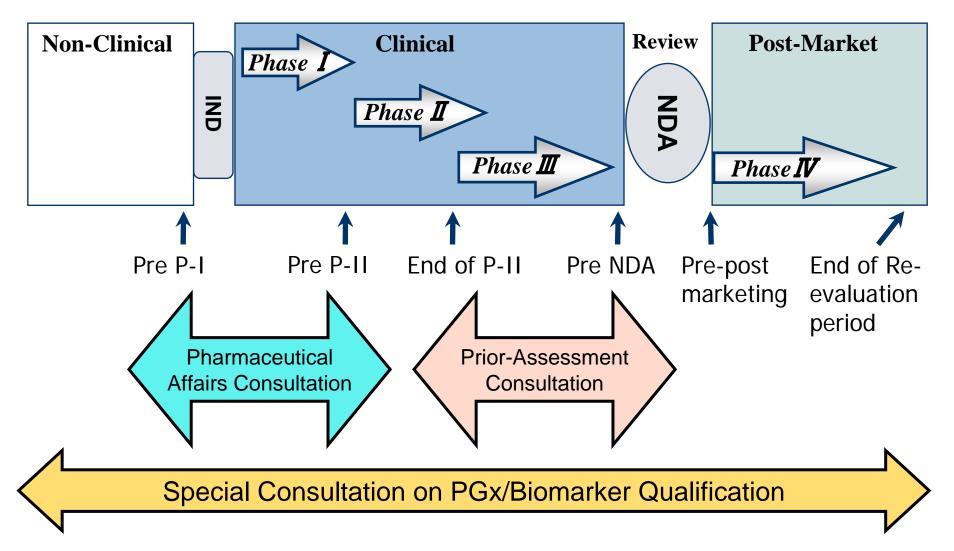
PGx-based data evaluation

in Multi-Regional Clinical Trials (MRCTs)

MRCTs with PGx

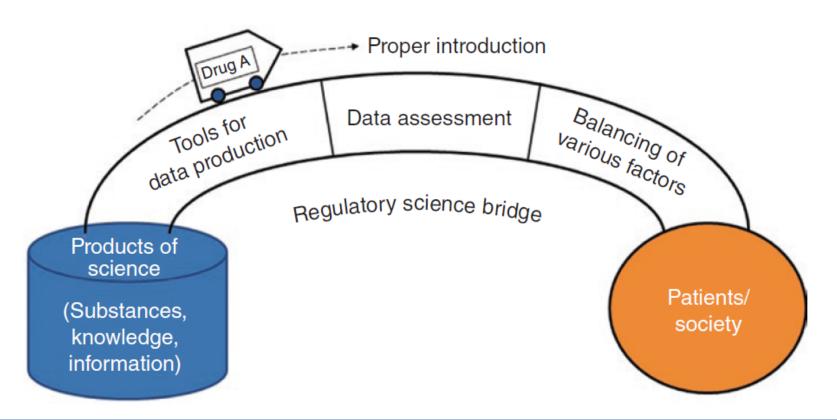
- In the era of globalization of drug developments
 - Encourage a sponsor to
 - Use PGx in global clinical trials
 - Include major ethnicities from an early stage of drug developments
 - Discuss with PMDA about a development strategy with PGx

Conduct a confirmatory trial after having grasped impacts of PGx in drug responses



PGx information in a drug label

- What evidence is needed to describe a practical guidance for a safety biomarker, such as dose adjustment and patient selection?
 - Which section and what level of warning?:
 - contraindication, indication, dosage, clinical pharmacology, etc.
 - requirement, recommendation, information only
- How to describe PGx information/data relating to ethnicities?
- Include more data in a stratified population in terms of race, nationality, and/or ethnicities?


Expanding PMDA Scientific Consultations

Revised from Figure by Ichimaru K et al, Clin Pharmacol Therapeut, 88: 454-457, 2010

Advancing Regulatory Science

Stronger & More Complete Regulatory Science Bridge will help us for the future drug developments

Tominaga T et al, Clin Pharmacol Ther, 90: 29-31, 2011

EMA PGx workshop, London, October 7-8, 2012

- SMART Global -

- Sharing data/experiences/knowledge globally
 - Managing projects/issues globally
 - Advancing regulatory science globally
 - Respect for other idea/views globally
 - Transparent process globally

WORKING TOGETHER FOR PATIENTS

- PMDA HOMEPAGE (English) http://www.pmda.go.jp/english/index.html
- E-mail: uyama-yoshiaki@pmda.go.jp

Thank you for your attention