Harnessing large language models to improve antimicrobial use monitoring in dairy farming

B. Koppe¹, X. Yang¹, K.J. Koebel², D.V. Nydam³, M. Capel⁴, R. Ivanek², J.J. Sun¹

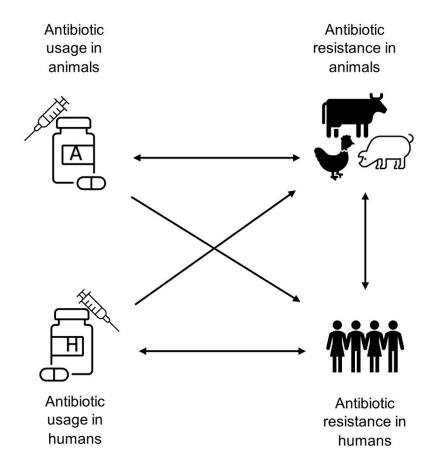
¹Dept. Computer Science, Cornell Bowers College of Computing and Information Science, Ithaca NY

²Dept. Population Medicine & Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca NY

³Dept. Public & Ecosystem Health, Cornell University College of Veterinary Medicine

⁴Perry Veterinary Clinic, Perry NY

Background: Antimicrobials & Antibiotics

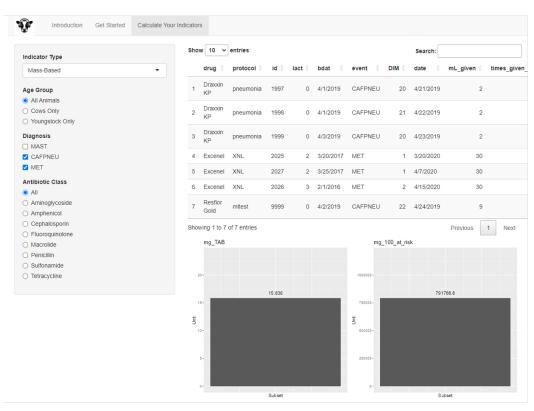


How can we better track & measure this data?

Background: AUDIO System

Dr. Katherine Koebel

Dr. Renata Ivanek



AUDIO's Input Conversion

- Start with raw data corresponding to "cow events"
- Each row represents something that happened to a cow
 - foot trim, antibiotic administration, etc.
- We must find all rows that relate to antibiotic administration and extract antibiotic use
 - drug, amount administered, etc.
 - medically important antimicrobials

Key Challenges

Sparse raw data

Required field knowledge

Drug information

Bottom line: Significant inference is required.

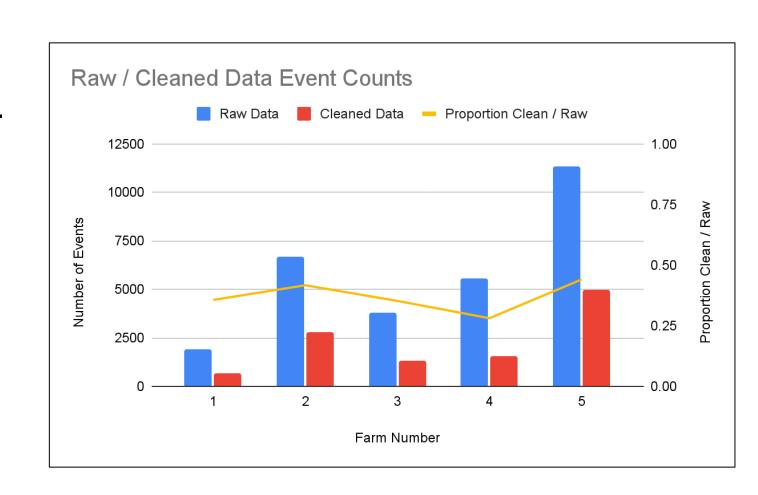
Lots of human effort needed.

Five Farms

 Currently working with 1 year of data from N = 5 New York farms.

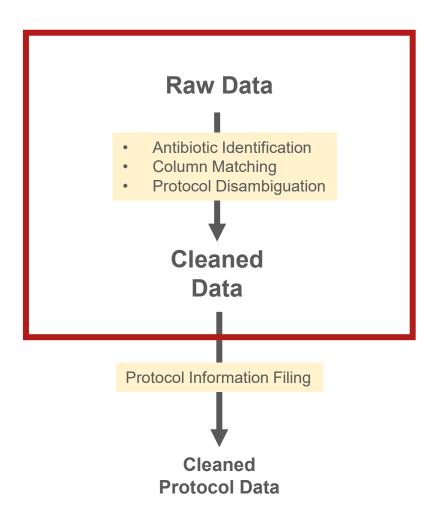
 Data size (event count) can differ significantly by farm

 We want to extract about the same proportion of rows from each farm.

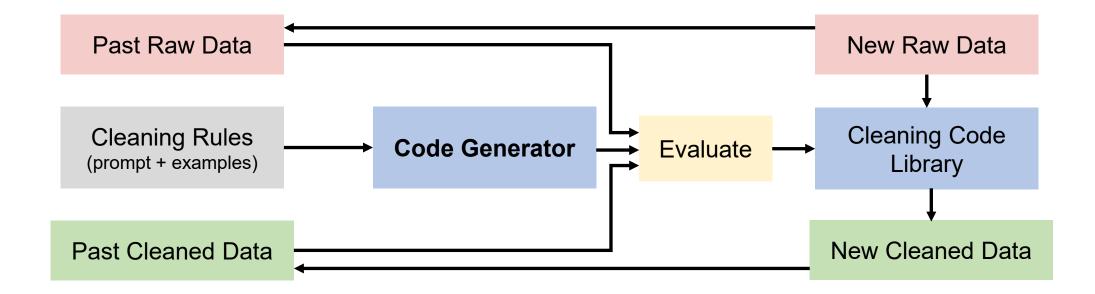


Methods

- Previous approach: Pure human labeling
 - Completely by hand
 - Tedious, time consuming
 - Cannot scale
- Goal: Leverage LLM for data standardization
 - · Generalizable, scalable, saves time
 - Previous work can kickstart our LLM
 - Priority: usability for veterinary researchers

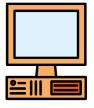


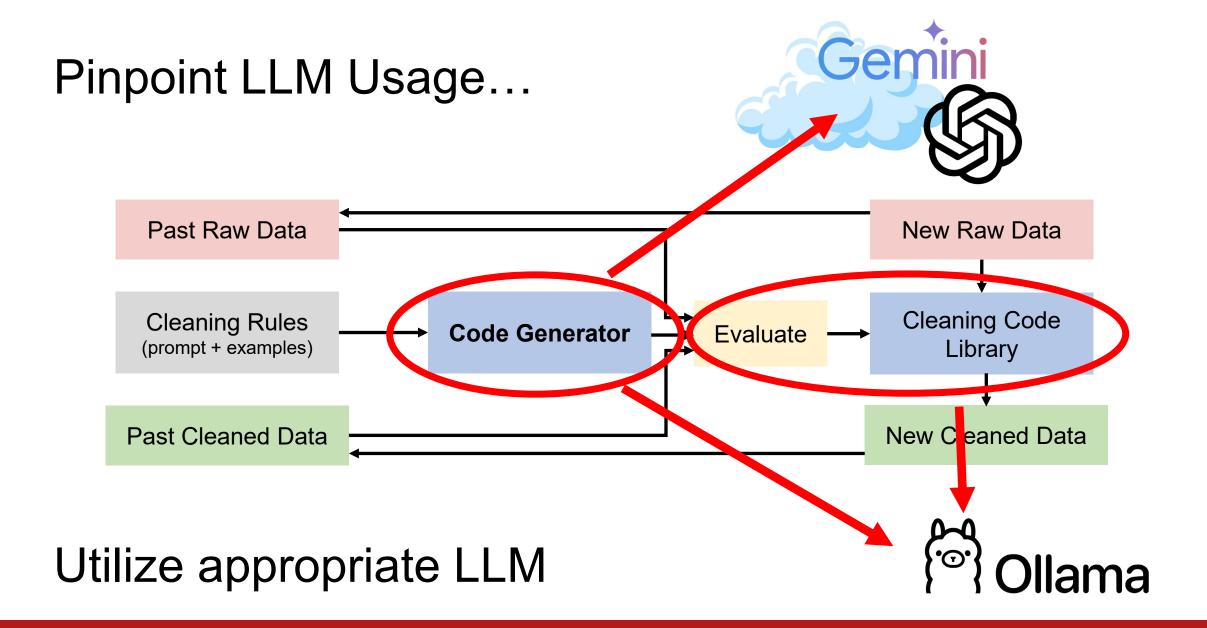
Agentic Pipeline



Hurdle: Confidential Data

- Farms' data is <u>confidential</u>
 - Cannot be given to mainstream Al providers (ChatGPT, Google Gemini, etc.)
- Solution: Host open-source models with Ollama
 - Meta Llama 3.3 70B
 - Ollama is easily portable, allowing us to easily swap from a weak to a powerful machine
 - Cloud providers still cannot be used

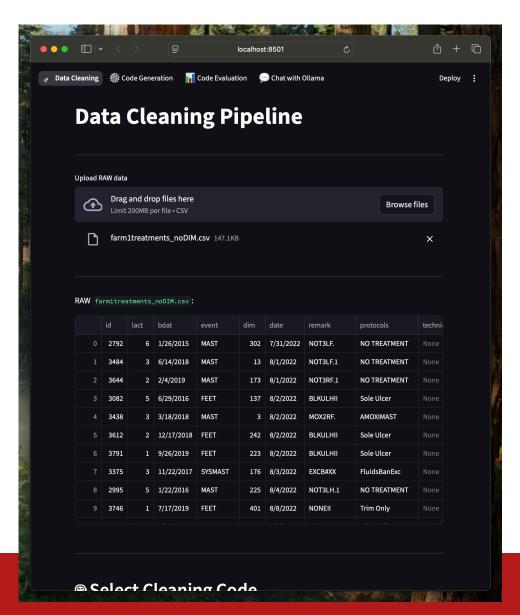




Hurdle: Usability

- Many moving parts
 - Generated files, multiple LLMs, etc.
- Intended to be used by veterinary researchers
 - Ideally could be used directly on-site, at a farm
- Solution: Website interface
 - Simple buttons and drag-and-drop interface

https://<URL>:



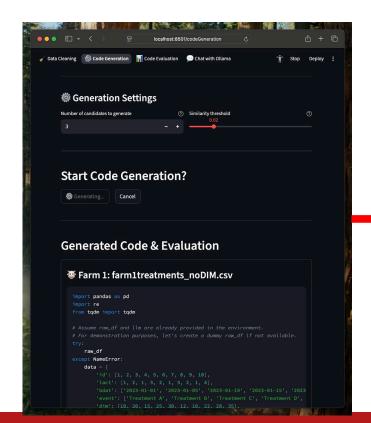
Web Interface

Before Farm

🐮 At Farm

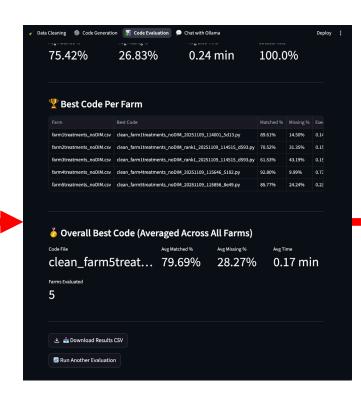
1. Generate code

Save best generations

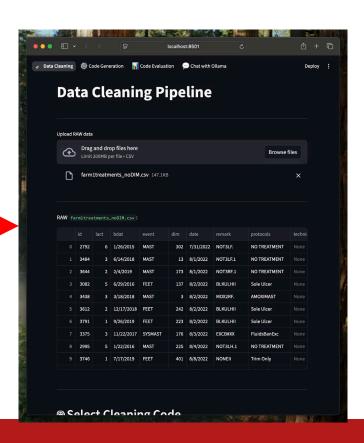


2. Evaluate

Rank all codes



3. Run best code on new farm



Experimental Design

```
import pandas αs pd
import re
import tqdm

# Note: The 'llm' variable is automatically provided at runtime.

# It is a LangChain chat model instance that you can use to invoke language model queries.

# Usage example:

# prompt = "Your question here"

# response = llm.invoke(prompt)

# answer = response.content # Extract the text response
```

- Simple task description
- Few-shot examples
 - For now, chosen randomly
- Dynamic LLM definition
 - Separates generation and runtime

```
### Example:
Protocol: ORBENIN.IMM
Remark: ORB/LOC
### Response:
yes
### Example:
Protocol: AMOXIMAST
Remark: MOX2RH
### Response:
yes
### Example:
Protocol: Sole Ulcer
Remark: BLKUQQII
### Response:
```

```
raw_df: pd.DataFrame,
few_shot_path: Path = BASE_DIR / "few_shot.txt",
predefined_path: Path = BASE_DIR / "predefined_func.txt",
few_shot = few_shot_path.read_text()
predefined_func = predefined_path.read_text()
cols = ", ".join(raw_df.columns.to_list())
You are a Python developer building an AI-powered data cleaning pipeline using a language model.
You are working with a pandas DataFrame named `raw_df`, where each row represents a treatment event in a veter
Some of these events involve the use of **antibiotics**. The DataFrame contains the following columns: {cols}
Relevant context about the treatment is provided in the `Remark`, `Protocols`, and `Event` columns.
Your task is to perform the following steps:
O. clean the `raw_df` by any necessary preprocessing (e.g. remove whitespace in columns and values, handle miss
- Convert the BDAT and Date to str (YYYY-MM-DD)
1. Identify whether each treatment event involves the use of an **antibiotic** by querying a language model.
 - For each unique `Protocol`, construct a natural language prompt that asks whether the treatment involves an
     \cdot For each Protocol, the Remark might be different. But you can only use the first occurrence of Remark fo
- You can include the few-shot examples in your prompt - {few_shot}
- Use `tadm` to display progress.
2. Only keep the rows where the corresponding `Protocol` indicate the event involves antibiotic use (like ther
- Save the protocols that involve antibiotics in a dictionary named `antibiotic_protocols`, where the key is
3. If the same `Protocols` name appears in multiple rows with different treatments (as indicated by difference
use like `{{protocol}}_{{remark}}` to disambiguous them. If it is already unique, keep the original name.
4. From the filtered DataFrame, keep only the columns: `['id', 'lact', 'bdat', 'event', 'dim', 'date', 'origin
   - The `original_protocol` column should contain the original protocol name before any disambiguation.
   - The `protocol` column should contain the disambiguated protocol name.
   Ensure that the column names is exactly the same as the columns above.
Make the code as robust and efficient as possible, handling potential errors, exceptions and edge cases.
Important:
      `raw_df` is already loaded and available for use.
      `llm` is a pre-configured LangChain chat model instance that is already available for you to use.
      You can invoke it with `llm.invoke(prompt)` where prompt is a string, and access the text response with
     No imports are needed - the `llm` variable is automatically provided at runtime.
     - Use the following helper functions and example code patterns: {predefined_func}

    Save final output as `cleaned_df'

Your code MUST be returned in a SINGLE continuous Python code block. Do not break it with long explanations. A
Return a **single Python code block** that completes this task.
```

Results: Case Study

Example performant code

1. Preprocessing

```
# 0. Clean the raw_df
# Make a copy to avoid modifying the original DataFrame if it's used elsew
df = raw_df.copy()

# Clean column names: remove leading/trailing whitespace
df.columns = df.columns.str.strip()

# Clean string values: remove leading/trailing whitespace and fill NaN wit

# 'bdat' and 'date' columns are handled separately for date formatting.

string_cols_to_clean = ['remark', 'protocols', 'event', 'technician']

for col in string_cols_to_clean:
    if col in df.columns:
        | df[col] = df[col].astype(str).str.strip().replace('nan', '')

# Convert BDAT and Date to str (YYYY-MM-DD)
for col in ['bdat', 'date']:
    if col in df.columns:
        | # Convert bdat', 'date']:
        | # Convert bdat', 'date']:
        | # Convert to datetime, coercing errors to NaT for invalid date for
        | df[col] = pd.to_datetime(df[col], errors='coerce')
        | # Format to YYYY-MM-DD string, NaT (Not a Time) values become NaN
        | df[col] = df[col].dt.strftime('%Y-%m-%d').fillna('')
```

2. Generated LLM Prompt

Utilizes given examples

```
protocol_antibiotic_status = {}
for protocol, row in tqdm(unique_protocols_df.iterrows(), total=len(unique_protocols_df.iterrows(),
    remark = row['remark']
    You are an expert in veterinary medicine and pharmacology. Your task is to de
    Carefully analyze the 'Protocol' and 'Remark' provided for each treatment.
    Respond with 'yes' if the treatment protocol explicitly indicates or strongly
    Respond with 'no' if the treatment protocol does not involve antibiotics, is
   Your answer should be a single word: 'yes' or 'no'.
    ### Example:
    Protocol: ORBENIN.IMM
    Remark: ORB/LOC
    ### Response:
    ### Example:
    Remark: MOX2RH
    ### Response:
    ### Example:
    Protocol: Sole Ulcer
    Remark: BLKU00II
    ### Response:
    ### Current Query:
    Protocol: {protocol}
    Remark: {remark}
    ### Response:
        response = llm.invoke(prompt)
        answer = response.content.strip().lower()
        protocol_antibiotic_status[protocol] = 'yes' in answer
    except Exception as e:
        print(f"Error querying LLM for Protocol '{protocol}': {e}")
        protocol_antibiotic_status[protocol] = False
```

3. Filter data & return desired information

```
antibiotic_protocols = {p: status for p, status in protocol_antibiotic_status.items() i
df filtered antibiotics = df[df['protocols'].isin(antibiotic protocols.kevs())].copy()
df_filtered_antibiotics['original_protocol'] = df_filtered_antibiotics['protocols']
df_filtered_antibiotics['remark_for_disambiguation'] = df_filtered_antibiotics['remark'
 ambiguous_protocols_series = df_filtered_antibiotics.groupby('original_protocol')['remar
 ambiguous_protocols_set = set(ambiguous_protocols_series[ambiguous_protocols_series > 1
 def get_disambiguated_protocol(row):
    Determines the disambiguated protocol name based on whether the original protocol
    is ambiguous (i.e., has multiple distinct remarks).
     if row['original_protocol'] in ambiguous_protocols_set:
         if row['remark_for_disambiguation'] = '':
            return row['original_protocol']
             return f"{row['original_protocol']}_{row['remark_for_disambiguation']}"
        return row['original_protocol']
 df_filtered_antibiotics['protocol'] = df_filtered_antibiotics.apply(get_disambiguated_pr
 final_columns = ['id', 'lact', 'bdat', 'event', 'dim', 'date', 'original_protocol', 'pro
 cleaned_df = df_filtered_antibiotics[final_columns].copy()
for col in ['bdat', 'date']:
    if col in cleaned_df.columns:
        cleaned_df[col] = cleaned_df[col].astype(str)
```

Preliminary Results

Large variation between generations

Xinyu Yang

Farm	Precision	Recall	Time (m)
farm1	0.95	0.87	0.45
farm2	0.96	0.94	0.48
farm3	0.99	0.91	0.3
farm4	1	0.7	1.52
farm5	0.78	0.76	2.06
all	0.94	0.84	0.96

Farm	Precision	Recall	Time (m)
farm1	0.95	0.81	0.61
farm2	0.96	0.94	1.08
farm3	0.99	0.91	1.1
farm4	0.84	0.72	1.66
farm5	0.76	0.72	2.16
all	0.9	0.82	1.32

Farm	Precision	Recall	Time (m)
farm1	0.95	0.8	0.09
farm2	0.96	0.94	0.09
farm3	0.99	0.91	0.1
farm4	0.86	0.76	0.11
farm5	0.78	0.76	0.13
all	0.91	0.83	0.1

Bottom 3

Farm	Precision	Recall	Time (m)
farm1	0.35	0.96	7.35
farm2	0.77	0.96	8.27
farm3	0.34	0.95	7.67
farm4	0.29	0.88	10.91
farm5	0.4	0.9	11.39
all	0.43	0.93	9.12

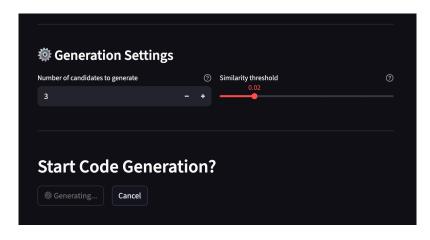
Farm	Precision	Recall	Time (m)
farm1	0.37	0.88	7.91
farm2	0.39	0.94	9.16
farm3	0.55	0.96	7.65
farm4	0.62	0.88	10.53
farm5	0.6	0.77	11.9
all	0.51	0.89	9.43

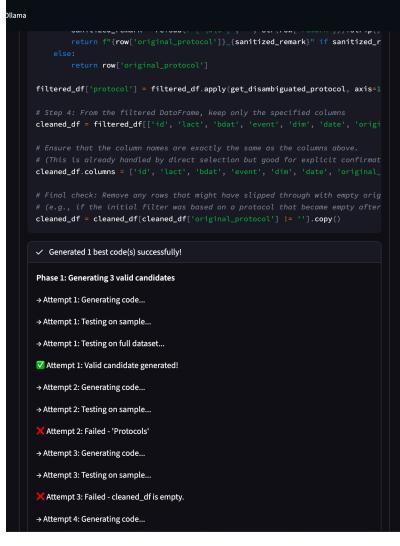
Farm	Precision	Recall	Time (m)
farm1	0.37	0.87	6.56
farm2	0.39	0.96	7.26
farm3	0.36	0.93	6.63
farm4	0.67	0.81	9.69
farm5	0.68	0.75	10.34
all	0.49	0.87	8.1

Web-based Evaluation

Worst generations are successfully pruned in generation phase

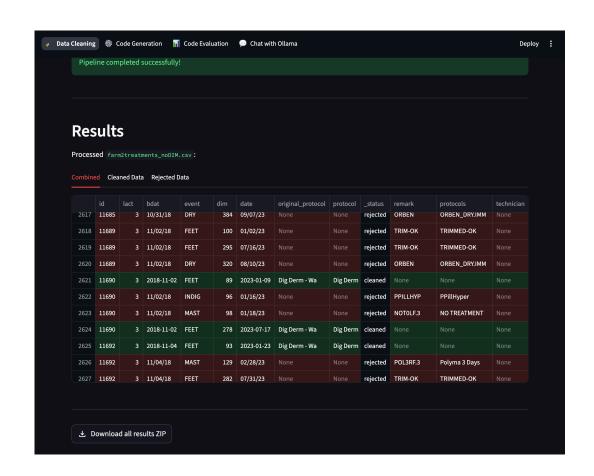
- Codes are generated in rounds of 3.
 - Simple validation ensures they can run on data without crashing.
- Once 3 are generated, only top performers are kept.
 - This helps eliminate poor performers at the generation step.





Conclusions

- LLM-based pipelines can standardize farm treatment data.
 - This can save significant human effort while maintaining accuracy.
 - Moving from manual to agentic workflows makes the system more flexible and scalable.
- Viable performance can be achieved without relying on cloud-based LLMs.
- Python code can easily be extended into a simple web interface.



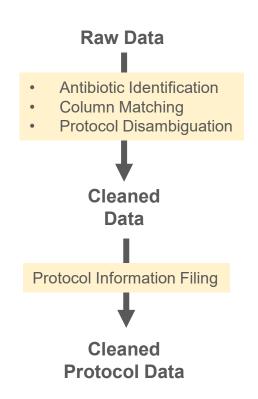
Next Steps

Cleaning Rules (prompt + examples)

Code Generator

Cleaning Code Library

- Allow the agent to discover standardization rules (i.e. the prompt).
- Experiment with more advanced agent feedback.
 - Show the agent past, failed generations, and allow iteration.
 - Try replacing human-made evaluation data with pipeline results.
 - These changes require no modification to the website.
- Scale to new farms.



Acknowledgements

AUDIO Project

Renata Ivanek, DVM, MSc, PhD Jennifer Sun, PhD Katherine Koebel, DVM Xinyu Yang Daryl Nydam, DVM, PhD Michael Capel, DVM Ece Bulut, PhD

Funding

of Health

This project is supported by the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services (HHS) as part of a financial assistance award U01FD008421 totaling \$199,907 with 100 percentage funded by FDA/HHS and \$0 amount and 0 percentage funded by non-government sources. The contents are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by FDA/HHS, or the U.S. Government. Research reported in this presentation was partially supported by the Office of the Director, National Institutes of Health (NIH) under Award Number T320D0011000. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center For Research Resources or the National Institutes of Health.