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Background: Antimicrobials & Antibiotics

BACKGROUND 

How can we better track 
& measure this data?



Background: AUDIO System

BACKGROUND 
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AUDIO’s Input Conversion

BACKGROUND 

Raw Data• Start with raw data 
corresponding to “cow events”

• Each row represents something 
that happened to a cow

• foot trim, antibiotic administration, etc.

• We must find all rows that relate 
to antibiotic administration and 
extract antibiotic use

• drug, amount administered, etc.

• medically important antimicrobials

Looks similar 
but challenging

Needs expert 
knowledge

Cleaned 
Data

Cleaned 
Protocol Data

Protocol Information Filing

• Antibiotic Identification
• Column Matching
• Protocol Disambiguation



Key Challenges

BACKGROUND 

Raw Data
• Sparse raw data

• Required field knowledge

• Drug information

Looks similar 
but challenging

Needs expert 
knowledge

Cleaned 
Data

Cleaned 
Protocol Data

Protocol Information Filing

• Antibiotic Identification
• Column Matching
• Protocol Disambiguation

Bottom line: Significant inference is required.

Lots of human effort needed.



Five Farms

BACKGROUND 

• Currently working with 1 year of 
data from N = 5 New York farms.

• Data size (event count) can 
differ significantly by farm

• We want to extract about the 
same proportion of rows from 
each farm.



Methods

METHODS 

• Previous approach: Pure human labeling
• Completely by hand

• Tedious, time consuming

• Cannot scale

• Goal: Leverage LLM for data standardization
• Generalizable, scalable, saves time

• Previous work can kickstart our LLM

• Priority: usability for veterinary researchers

Raw Data

Cleaned 
Data

Cleaned 
Protocol Data

Protocol Information Filing

• Antibiotic Identification
• Column Matching
• Protocol Disambiguation



Agentic Pipeline

METHODS 

Past Raw Data

Cleaning Rules
(prompt + examples) Code Generator Cleaning Code 

Library

Past Cleaned Data

New Raw Data

New Cleaned Data

Evaluate



Hurdle: Confidential Data

METHODS 

• Farms’ data is confidential
• Cannot be given to mainstream AI providers (ChatGPT, 

Google Gemini, etc.)

• Solution: Host open-source models with Ollama
• Meta Llama 3.3 70B

• Ollama is easily portable, allowing us to easily swap from a 
weak to a powerful machine

• Cloud providers still cannot be used



Pinpoint LLM Usage…

METHODS 

Past Raw Data

Cleaning Rules
(prompt + examples) Code Generator Cleaning Code 

Library

Past Cleaned Data

New Raw Data

New Cleaned Data

Evaluate

Utilize appropriate LLM



Hurdle: Usability

METHODS 

• Many moving parts
• Generated files, multiple LLMs, etc.

• Intended to be used by veterinary 
researchers

• Ideally could be used directly on-site, at a farm

• Solution: Website interface
• Simple buttons and drag-and-drop interface

https://<URL>:



Web Interface

METHODS 

1. Generate code 2. Evaluate 3. Run best code on 
new farm

Before Farm  At Farm

Save best generations Rank all codes



Experimental Design

METHODS 

• Simple task description
• Few-shot examples

• For now, chosen randomly

• Dynamic LLM definition
• Separates generation and runtime



Results: Case Study

RESULTS

1. Preprocessing

2. Generated LLM Prompt 3. Filter data & return 
desired information

Example performant code
Utilizes given examples



Preliminary Results

RESULTS 

Top 3

Bottom 3

Large variation between generations Xinyu Yang



Web-based Evaluation

RESULTS 

Worst generations are successfully pruned in generation phase

• Codes are generated in 
rounds of 3.

• Simple validation ensures 
they can run on data without 
crashing.

• Once 3 are generated, 
only top performers are 
kept.

• This helps eliminate poor 
performers at the generation 
step.



Conclusions

CONCLUSIONS

• LLM-based pipelines can standardize 
farm treatment data.

• This can save significant human effort while 
maintaining accuracy.

• Moving from manual to agentic workflows 
makes the system more flexible and scalable.

• Viable performance can be achieved 
without relying on cloud-based LLMs.

• Python code can easily be extended 
into a simple web interface.



Next Steps

CONCLUSIONS

• Allow the agent to discover 
standardization rules (i.e. the prompt).

• Experiment with more advanced agent 
feedback.

• Show the agent past, failed generations, 
and allow iteration.

• Try replacing human-made evaluation data 
with pipeline results.

• These changes require no modification to 
the website.

• Scale to new farms.

Raw Data

Cleaned 
Data

Cleaned 
Protocol Data

Protocol Information Filing

• Antibiotic Identification
• Column Matching
• Protocol Disambiguation

Cleaning Rules
(prompt + examples) Code Generator Cleaning Code 

Library
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