Harnessing the value of genomic data for evidence generation

Jessica Mwinyi, MPA Sweden

Overview

1. Regulatory Overview

- EMA expert group for PGx
- PGx-related regulatory steps in the past and future

2. Reflection of PGx in the SmPCs – how far have we come?

- Where to find the information
- important examples of PGx information labeled as a strong recommendation

3. Challenges

- CYP3A4
- Examples where PGx is currently reflected rather informatively in the SmPCs

4. The Future: PGx and Big Data

- Value of large GWAS, proteome, and metabolome data for personalized treatment
- 5. Current and future chances and challenges of PGx
- 6. Take-Home Messages

PGx stakeholder workshop September 2024

Format

Organizers

Co-hosted by the European Commission (DG-RTD) MWP ESEC members

Session 1: PGX and public health

- ✓ Importance of PGx for public health
- ✓ Regulatory perspectives
- Centrally authorized products with PGx info in the SmPC

PGx workshop

Full-day hybrid workshop

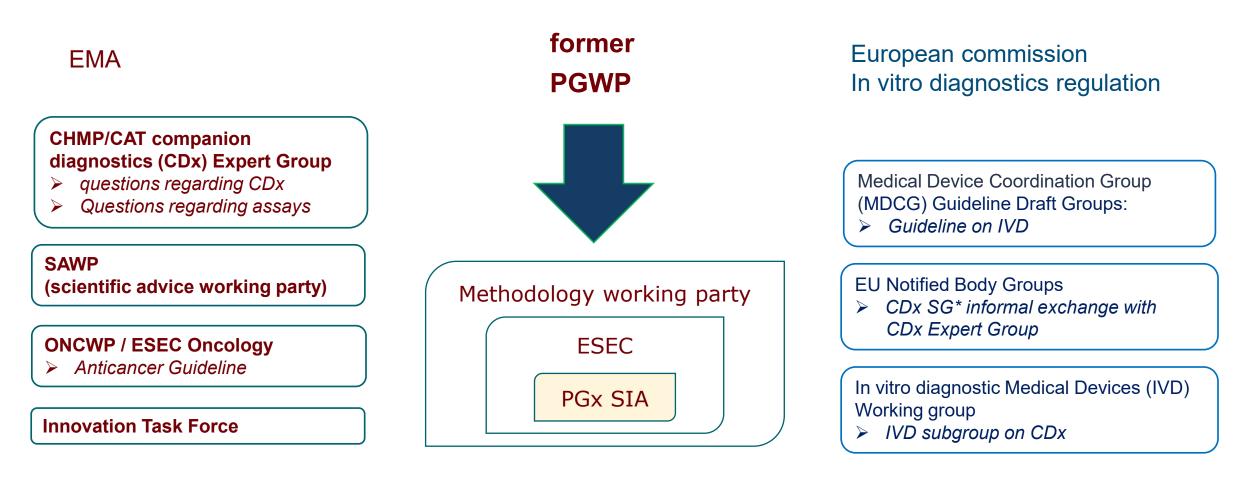
60 in-person attendees

>500 people online

Material

Available on the EMA homepage

• Session 4: Panel discussion


- ✓ Perspectives from different stakeholders
- Challenges and enablers for the use of PGx in healthcare and medicine development

- Session 2: Clinical practice
 - ✓ Implementation of PGx in clinical practice
 - ✓ Country examples

- Session 3: Real World Data and Biobanks
 - ✓ Use of real-world data and biobanks in PGx research

PGx SIA - Pharmacogenetics expert group within the EMA

*CDx SG = Subgroup of the European Notified Bodies created for informal exchange with CHMP/CAT CDx Expert Group

History of and Upcoming Regulatory Steps in the Field of PGx

LÄKEMEDELSVERKET

Pharmacogenetic Information in the SmPCs

Section	Title	Content Related to Pharmacogenetics
4.1	Therapeutic Indications	Indicates if pharmacogenetic testing is required for determining therapy eligibility (e.g., HER2 testing for trastuzumab).
4.2	Posology and Method of Administration	Provides information on dosing adjustments based on genetic variants affecting drug metabolism or efficacy (e.g., <i>TPMT</i> variants and azathioprine; <i>CYP2C9</i> variants and siponimod).
4.3	Contraindications	Lists any genetic conditions or polymorphisms that contraindicate drug use due to safety risks (siponimod and <i>CYP2C9</i>)
4.4	Special Warnings and Precautions for Use	Genetic variants that could increase adverse event risks, suggesting or requiring genetic testing (e.g. HLA variants, phenytoin, carbamazepine)
4.5	Interaction with Other Medicinal Products	Genetic variants that affect drug-drug interactions or response
4.8	Undesirable Effects	Highlights adverse reactions that may vary in frequency or severity based on genetic polymorphisms.
5.1	Pharmacodynamic Properties	Provides background on how genetic variants influence the drug's mechanism of action or efficacy
5.2	Pharmacokinetic Properties	Explains how genetic variants impact drug absorption, distribution, metabolism, and elimination
5.3	Preclinical Safety Data	May reference pharmacogenetic findings from preclinical studies

Clinical Relevance: Genetic testing information is usually included when specific variants considerably impact safety, efficacy, or dosing. This comprises especially (but not only):

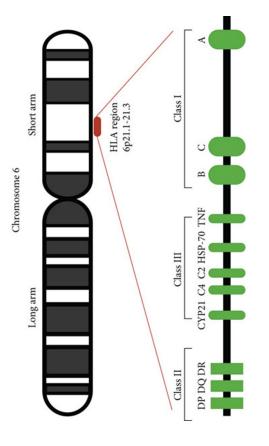
Sections 4.1 - 4.4: Primary sections for information on mandatory or recommended genetic testing before or during treatment.

Sections 5.1 & 5.2: Detailed pharmacogenetic insights on how genetic variants influence drug action and metabolism.

Essential PGx Applications with Critical Clinical Impact

Companion Diagnostics (CDx)

Hamilton et al. 2019, the Pharmaceutical Journal

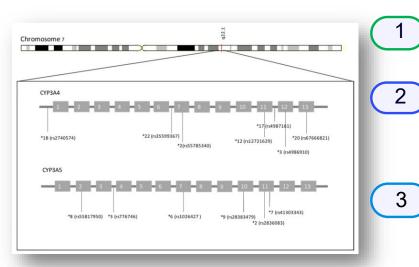


KEMEDELSVERKET

Drug	SmPC Section	Genotyping Requirement	Gene/Allele	Reason
Ivacaftor	4.1	strong	<i>CFTR</i> (several variants, e.g., <i>G551D</i>)	Confirm CFTR mutation responsive to ivacaftor
Trastuzumab	4.1	strong		Confirm HER2 status for therapy suitability
Gefitinib	4.1	strong	EGFR-TK mutation status	Confirm activating mutations of EGFR-TK
Maraviroc	4.1	strong	•	Confirm CCR5-tropic HIV-1, ineffective against others
Abacavir	4.1	strong	HLA-B*5701	Identify hypersensitivity risk
Carbamazepine	4.2	strong	HLA-B*1502	Identify risk of severe cutaneous adverse reactions in patients with Asian descent
Sipominod	4.2	strong		Genotyping before start. Adjust dosing in case of reduced CYP2C9 activity
Azathioprine & Mercaptopurine	4.2	strong	<i>TPMT</i> (e.g., <i>TPMT*3A, *3C</i>)	Identify TPMT deficiency linked to myelotoxicity risk
Capecitabine/ 5-Fluorouracil	4.3	strong	<i>DPYD</i> (several variants)	Identify DPD deficiency linked to

List not exhaustive

HLA Genotyping recommendations in the SmPCs


Medhasi et al. 2022, Journal of Immunology Research

Drug	SmPC Section	Genotyping	Allele	Population
Abacavir	4.1	strong	HLA-B*5701	All
Carbamazepine	4.2	strong	HLA-B*1502	Asian (e.g., Han Chinese);
	4.4	Informs about association / no	HLA-B*3101	European and Japanese
Allopurinol	4.4	elective	HLA-B*5801	Asian
Phenytoin	4.4	caution	HLA-B*1502	Asian
Oxcarbazepine	4.4	caution	HLA-B*1502	Asian
Lamotrigine	4.4	caution	HLA-B*1502	Asian
Flucloxacillin	4.8	Informs about association / no	HLA-B*5701	All

"SmPC Section" refers to the section in the Summary of Product Characteristics where the genotyping recommendation is stated. List is not exhaustive

CYP3A4 / CYP3A5 genetic variants

Saiz-Rodriguez M et al. 2020, Biomedicines

Influence Tacrolimus metabolism

Currently limited Clinical Applicability of CYP3A4 variants

Only certain variants, like *CYP3A4*22*, currently show potential for influencing dosing guidance, for certain drugs while most *CYP3A4* alleles lack defined clinical relevance

Complex Regulatory Mechanisms

5

6

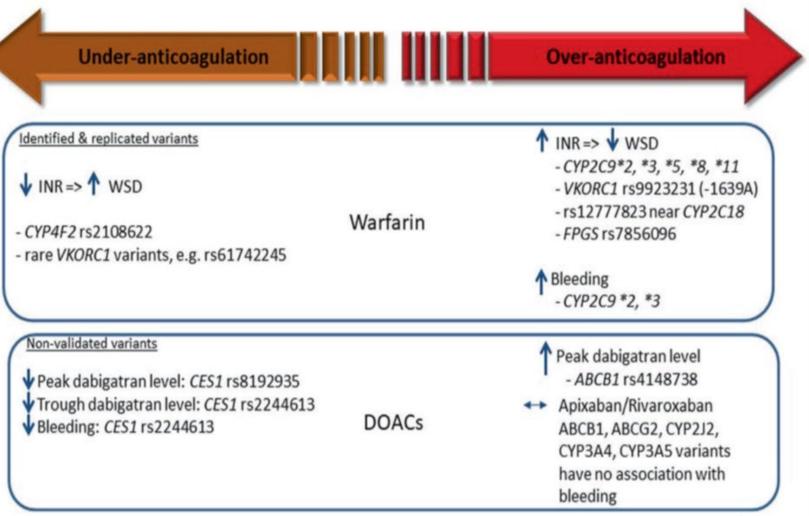
CYP3A4 activity is regulated by complex genetic and environmental factors, with overlapping metabolism involving CYP3A5, complicating allele-specific utility assessments

SNP	rs Number	Functional Impact	Clinical Relevance	Allele Frequency		
СҮРЗА4						
CYP3A4*22	rs35599367	Reduced enzyme activity	Influences drugs like statins and tacrolimus	White: ~5-8% Asian: <1% Black: <1%		
СҮРЗА5						
CYP3A5*3	rs776746	Non-functional enzyme (loss of function)	Common in non- expressers; important for e.g. tacrolimus	White: ~80-90% Asian: ~70-80% Black: ~10-30%		
CYP3A5*6	rs10264272	Non-functional enzyme	Affects metabolism in individuals of African descent; impacts tacrolimus	White: <1% Asian: Rare Black: ~10-20%		
CYP3A5*7	rs41303343	Non-functional enzyme	Predominantly found in individuals of African descent, influencing drug metabolism	White: <1% Asian: Rare Black: ~5-10%		

Measurement Challenges

Distinguishing between CYP3A4 and CYP3A5 contributions is difficult due to shared substrate specificity

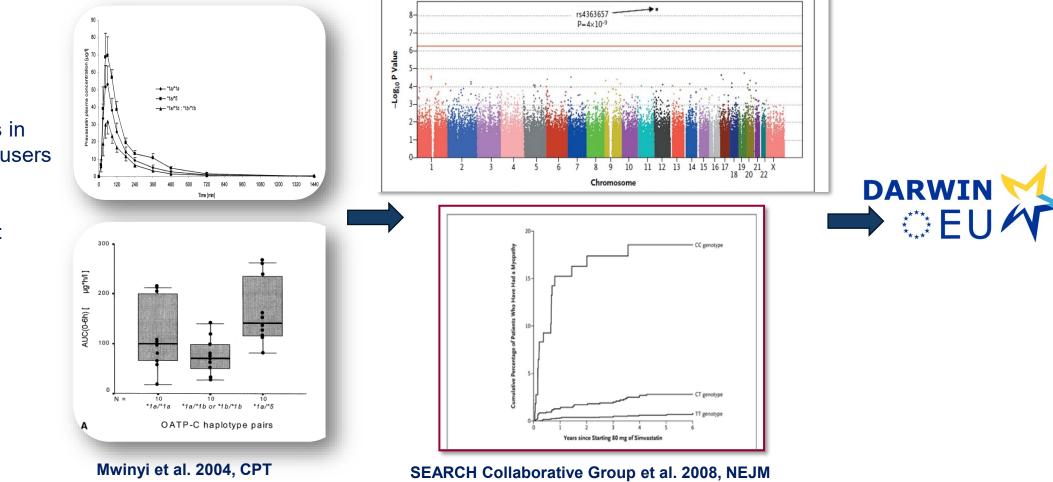
Genotyping Difficulties


The complex *CYP3A4* haplotype structure introduces uncertainties in the determination accuracy

Rarity of Certain Alleles

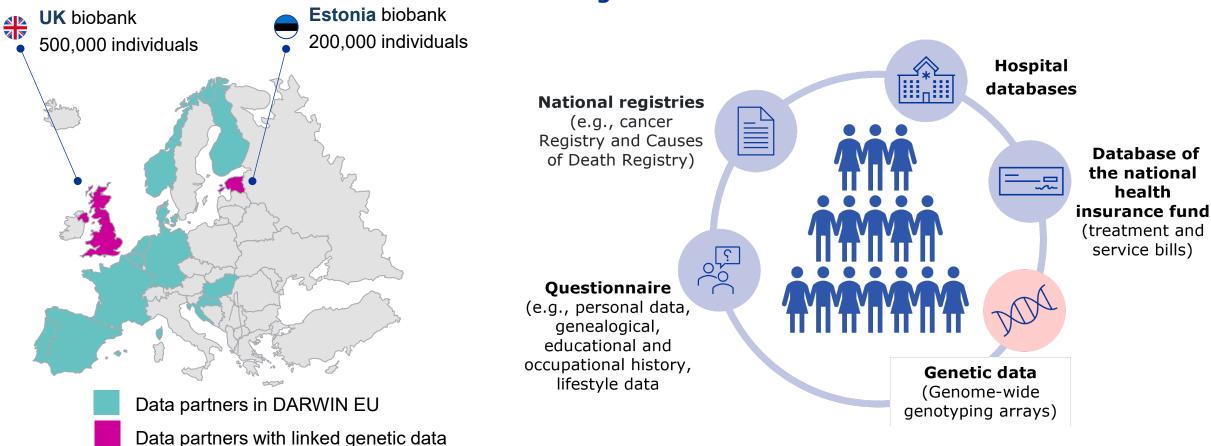
Low prevalence of some *CYP3A4* alleles limits the ability to fully characterize their effects in clinical settings

Optimized PGx as a basis for dosing recommendations in the future? Example anticoagulants (Warfarin and DOACs)


Further optimized PGx as a basis for dosing recommendations in the future? Example statins – from small pilot studies to big data

Statins:

Muscle symptoms in 1%-30% of statin users (mild to severe).


Severe myopathy: 0.1%

Rhabdomyolysis: <0.01%

Large Pharmacogenomics pilot study : Association between genetic polymorphisms of interest and risk of myopathy in statin users

Access to genetic data linked to EHRs

DARWIN

ા El

DARWIN – statin study Context, objectives and timeline

High-level aim of the pilot

- Contribute to increasing capability in understanding and leveraging pharmacogenomic evidence in regulatory decision-making
- Demonstrate capability of DARWIN EU to generate such evidence

Rationale for the study

- Regulatory interest in exploring the role of OATP1B1 (SLCO1B1 c.521CC) gene polymorphism in atorvastatin users with regards to risk of myopathy
- Ultimate aim to inform whether genetic testing may help predict risk of myopathy in users of atorvastatin and other selected statins, and whether dose adjustment may minimise this risk in carriers of the polymorphisms
- Other polymorphisms of interest include *ABCG2* (linked to rosuvastatin)

Primary objectives

- 1a To estimate the risk of myopathy in new users of atorvastatin (any dose) according to genotype status
- 1b To estimate the risk of myopathy in new users of lower-dose atorvastatin according to genotype status
- 1c To estimate the risk of myopathy in new users of higher-dose atorvastatin according to genotype status
- Secondary objectives
- 2a To estimate the risk of myopathy in new users of simvastatin (separately for any dose, lower-dose and higher-dose) according to genotype status
- 2b To estimate the risk of myopathy in new users of rosuvastatin (separately for any dose, lower-dose and higher-dose) according to genotype status if feasible
- 2c To estimate the risk of myopathy in new users of fluvastatin (separately for any dose, lower-dose and higher-dose) according to genotype status if feasible
- 2d To estimate the risk of myopathy in new users of pravastatin (separately for any dose, lower-dose and higher-dose) according to genotype status if feasible

TIMELINE:

- Protocol to be published shortly in the <u>HMA-EMA Catalogues of real-</u> world data studies (final review ongoing)
- Findings expected in Q1 2025

The Role of Big Data in Advancing Pharmacogenomics (PGx) – The use of Genome-Wide Data

OPPORTUNITIES

o Identification of New Genetic Markers:

Genome-wide association studies (GWAS) enable the discovery of novel genetic variants linked to drug response and adverse effects.

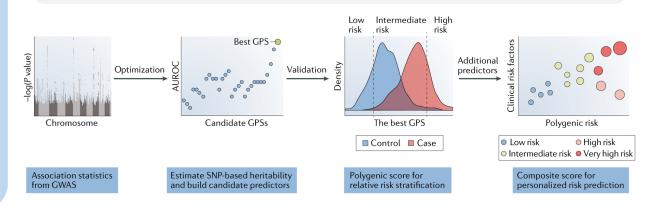
• Population-Specific Insights:

Large-scale genomic data help identify PGx markers across diverse populations, addressing ethnic variability in drug response.

• Polygenic Risk Scores:

Combine multiple SNPs to predict individual risk for adverse reactions or drug efficacy, which may, in certain cases, enhance personalized treatment.

o Genome-wide SNP enrichment analyses


Identify SNPs that influence gene expression (expression quantitative trait loci (eQTLs)), i.e. those enriched in regulatory regions, revealing functional links between genetic variation and phenotypic traits.

Current State

GWAS has identified some important PGx markers

Current Limitations:

- Impact of summary SNP effects not understood yet / needs to be to a stronger extent explored
- SNPs in non-coding areas and their impact on (long-distance) gene regulation not fully understood (eQTL signals)
- Adequate biobank data are missing
- Requires both validation and then also regulatory support

Liu et al. 2018, Nature Rev Nephrol

Proteomics in personalized therapy

METHODS

Mass Spectrometry (MS); Affinity-Based Methods (ELISA, Western Blot, or Protein Microarrays)

APPLICATIONS

Predicting Drug Response (biomarker-based patient stratification and therapy selection)

Identifies protein profiles and proteins linked to drug sensitivity or resistance

Understanding Drug Action

Helps to understand drug action and side effects at the protein interaction level

Novel Therapeutic Targets

Uncovers new proteins for developing tailored therapies

OPPORTUNITIES

Examples: Cancer Therapy, Neuropharmacology

Protein expression profiles in tumor cells

Protein expression in CFS (Alzheimer's disease, MS)

Example: Drug Metabolism

Certain post-translational modifications of drugmetabolizing enzymes or transporters can affect their activity; dosing adjustments may be necessary

Example: Inflammatory Diseases

Proteomic profiling can reveal e.g. specific kinases as potential drug targets

Metabolomics in Personalized Therapy

θ⊘

Biomarker Discovery

Precision dosing

oOO

Metabolic Phenotyping

Genetic and Environmental Influences

Metabolomics can identify metabolite biomarkers linked to drug response, providing insights into individual drug metabolism and potential resistance. Measurement of levels of drug metabolites in blood or urine to determine if a patient is metabolizing the drug effectively, allowing for dose adjustments. Can group patients into metabolic phenotypes based on metabolite profiles, enabling precise dose adjustments for drugs with narrow therapeutic windows. May help to clarify how genetic and environmental factors influence drug metabolism

Metabolomics data can provide valuable insights into drug metabolism profiling, prediction of drug interactions, and precision dosing.

Current limitations of broad PGx applicability

Data Gaps	Many older drugs lack adequate pharmacogenomic data for SmPC inclusion		
SmPC Updates	Inconsistent updates for registered products with new pharmacogenomic findings		FDA
New MAAs	Comprehensive PGx data in new Marketing Authorization Applications better reflected than in older ones		
Currently very conservative approach	Rather careful PGx implementation approach in SmPCs	International PGx consortia	National PGx consortia
Global Inconsistency	Lack of harmonization in PGx information across global regulatory agencies and consortia	CPIC	EMA Consortia
Ethnic Diversity	Insufficient data on genetic polymorphisms across diverse ethnic groups	PharmVar EU-PiC	RNPGx CPNDS
PGx in psychopharmacology	Still very limited information in SmPCs available regarding PGx guided dosing in psychiatry		

Take home messages regarding regulatory needs in association with PGx

3

5

Global Harmonization

Align pharmacogenomic guidelines and SmPC information across regions to ensure consistent application worldwide

Ethnic-Specific Insights

Address genetic diversity across populations by considering polymorphisms specific to different ethnicities

Practical Relevance

Ensure pharmacogenomic information is sufficiently detailed in SmPCs and applicable in clinical practice

Education & Integration

Train healthcare professionals and promote the integration of pharmacogenomics into routine healthcare

Robust Evidence

Conduct more cost-effectiveness studies and leverage real-world data to strengthen pharmacogenomic evidence

4

Proactive Labeling approach

Update of older products and further in-depth evaluation of areas such as e.g., psychopharmacology and anticoagulative therapy

Thank you very much!

