How are COVID-19 vaccines developed?

Dr. Marco Cavaleri
Head of Biological Health Threats and Vaccines Strategy, EMA
Outline

1. Overview
2. Pharmaceutical quality studies
3. Laboratory studies
4. Clinical studies - efficacy and safety
5. COVID-19 vaccines compared with standard vaccines
6. COVID-19 vaccines under assessment for approval by EMA
Overview

COVID-19 VACCINE DEVELOPMENT, EVALUATION, APPROVAL AND MONITORING

Small scale studies
Pharmaceutical quality

In vitro
Non-clinical

In vivo
Clinical trials

I
II
III

EMA
Evaluation & decision

EC

Scale up production
Manufacturing

Safety monitoring

Safety studies
Pharmaceutical quality studies

Studies to generate data on:

- Vaccine **components** and their **purity**
- Vaccine’s biological activity
- Data on each step of **manufacturing**
- Data on the **controls** used to ensure that each batch of vaccine is consistently of good quality
- Conditions for **storing** the vaccine
Laboratory studies

- Studies in the **laboratory before** testing in **humans** for **all vaccines**
- **Types of immune responses** the vaccine causes.
- Can **identify potential safety problems**
- Make sure the vaccine does not cause **fertility problems** nor affect **babies’ development** before birth
- **Challenge studies check** if animals given COVID-19 vaccine are protected from disease when exposed to the virus and not worsening the disease
- Sometimes studies on **how the vaccine reaches** body **organs**
Clinical studies – efficacy and safety

- Clinical trials are studies in humans which show:
 - how safe the vaccine is (safety)
 - how well the vaccine works (efficacy)
 - immune responses (immunogenicity)

- Three study phases:
 - Phase I: early studies
 - Phase II: larger exploratory studies
 - Phase III: efficacy and safety studies

Clinical trials follow strict scientific and ethical rules
Clinical studies – efficacy and safety

Phase I trials
- **20 - 100** healthy volunteers
- Expected **immune response**?
- **Safe** to move into **larger studies**?
- Which **doses**?

Phase II trials
- **Several hundred** volunteers
- Best **doses** to use?
- Most common **side effects**?
- Immune response in more people?

Phase III trials
- **Thousands** of volunteers
- How the vaccine **protects against disease** compared with placebo (dummy) or with a non-COVID vaccine
- Less common **side effects**?
Clinical studies – efficacy and safety

MEASURING COVID-19 VACCINES’ BENEFIT

• **Prevention of symptomatic disease as** main measure of benefit
 • **Less disease with symptoms** in people given vaccine *compared to placebo*

• Other benefits likely **uncertain at approval** and only clearer after the vaccine is used:
 • **Long term protection**
 • Prevention of infection (**asymptomatic** cases)
 • Prevention of virus **transmission in the community** - needs specific studies post-approval

Efficacy levels

Studies designed to show efficacy of **50%** or more

50% efficacy means the vaccine prevents half of the cases of symptomatic COVID-19 compared with placebo

90% efficacy means the vaccine prevents nine out of 10 cases of symptomatic COVID-19 compared with placebo
Clinical studies – efficacy and safety

- **Large number** of **adults** expected (above 30,000)
- Ideally **one quarter** of all participants **above 65 years** of age
- **Some people** with **underlying diseases** at risk of severe COVID-19
- Some studies include **adolescents above 16** years of age
 - Younger children to be studied after analysing data in adults and adolescents
- Some **minorities** represented
- Follow-up data for **at least** the **6 weeks** after last dose of vaccine
 - Most side effects occur within 4-6 weeks of having a dose
- Trials to last **for at least 1 year**: longer-term protection & side effects
STANDARD VACCINES COMPARED WITH COVID-19 VACCINES

Indicative timeline

- Pharmaceutical quality
- Non-clinical research
- Phase I
- Phase II
- Phase III
- Scientific evaluation and authorisation
- Clinical trials
- Large-scale production
- Studies after authorisation
- Vaccine available for use
STANDARD VACCINES COMPARED WITH COVID-19 VACCINES

Regulatory standards

COVID-19 vaccines must be approved according to the **same standards** that apply to all medicines in the EU.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Safety</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

STANDARD COVID-19

- ✔️ Safety
- ✔️ Quality
- ✔️ Efficacy
COVID-19 vaccine development is \textit{compressed in time}, applying the extensive \textit{current knowledge} on vaccine development.
COVID-19 vaccine development **mobilises more resources simultaneously**
COVID-19 vaccine development is supported by early, continuous dialogue between developers and a dedicated group of regulatory experts **EMA COVID-19 Task Force**
Companies are **expanding** manufacturing and production **capacity** to ensure efficient vaccine deployment.
COVID-19 vaccines under assessment for approval by EMA

mRNA vaccines contain genetic instructions (mRNA) for making an immune response against coronavirus

- Pfizer-BioNTech (BNT162b2)
- Moderna (mRNA-1273)

Viral vectors use modified harmless adenovirus to carry genetic instructions for making an immune response against coronavirus

- Astra Zeneca/Oxford (ChAdOx1-SARS-CoV-2)
- Janssen (Ad26.COV2.S)

New systems

- Faster development and manufacture of key ingredients
- Based on experience and knowledge with other vaccines and medicines

More vaccines

- With other viral vectors or specific proteins are under development
Conclusions

- **Same types of studies** as for other medicines
- Timelines **shortened** - **Pooling** expertise
- Studies in **large numbers of people**
- Expected benefits at time of initial approval:
 - Demonstrated **reduction in COVID-19 disease**
 - Some **uncertainties: long term protection** and **community transmission**
 - Use of facemask, hand hygiene, physical distance **remain important**
- **High** regulatory **standards** for Quality, Safety and Efficacy