

Measuring the Impact of Pharmacovigilance Practice on Patient Well-Being

Robert Reynolds, ScD VP, WSS Epidemiology Pfizer Research & Development

European Medicines Agency

December 5, 2016

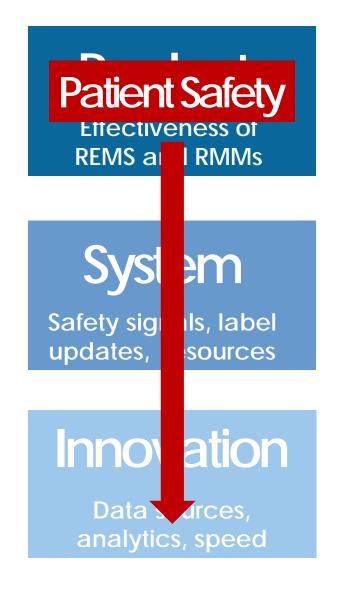
WORLDWIDE RESEARCH & DEVELOPMENT

Measurement strategies: process, outcomes, value

Product

Effectiveness of REMS and RMMs

System


Safety signals, label updates, resources

Innovation

Data sources, analytics, speed

Measurement strategies: process, outcomes, value

FDA and EMA require similar elements for REMS and aRMM evaluations

US REMS and EU-RMP Strategies

Varenicline US REMS

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2013; 22: 705-715 Published online 24 January 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3400

ORIGINAL REPORT

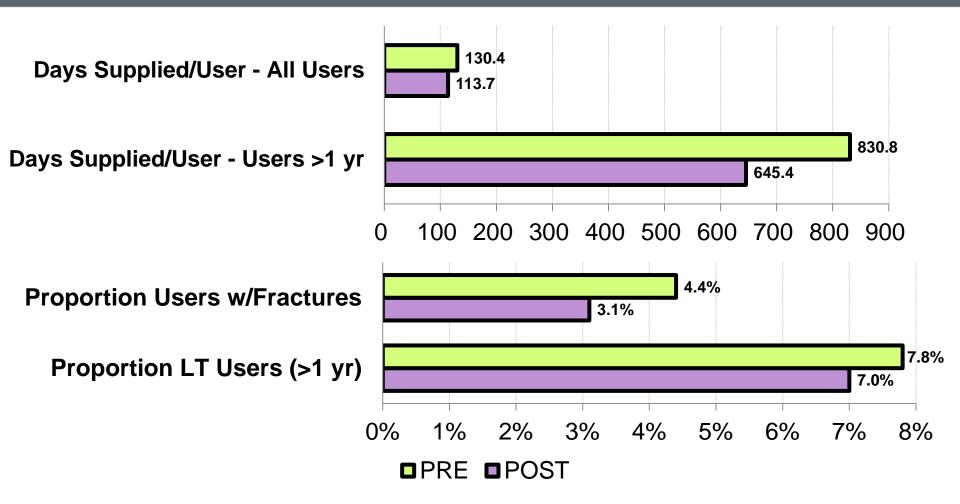
The effectiveness of varenicline medication guide for conveying safety inf SCOPE J

Cheryl Enger^{1*}

¹Epidemiology, Of ²Epidemiology, W ³Division of Pharn

Strengthening Collaborations for Operating ool, Boston, MA, USA **Pharmacovigilance in Europe** Work Package 6 – Risk Communication

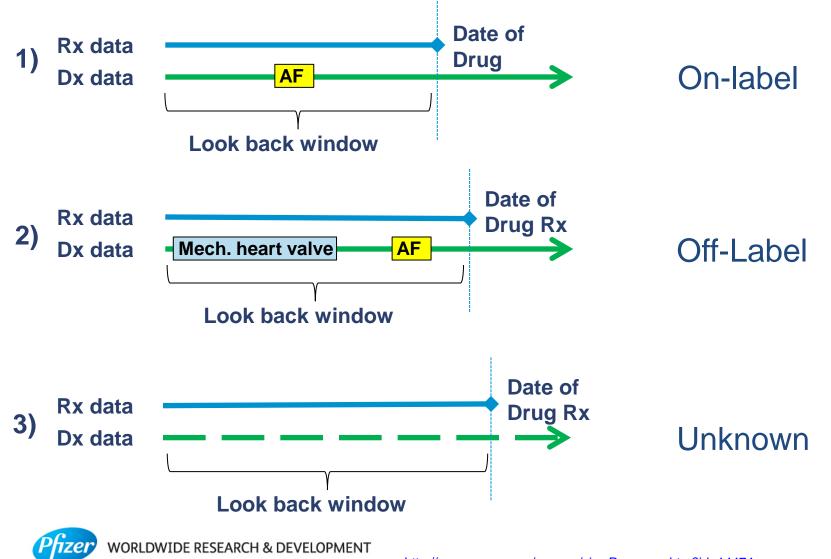
> Commentary on "The Effectiveness of Varenicline Medication Guide for Conveying Safety Information to Patients: a REMS Assessment Survey" by Enger et al.

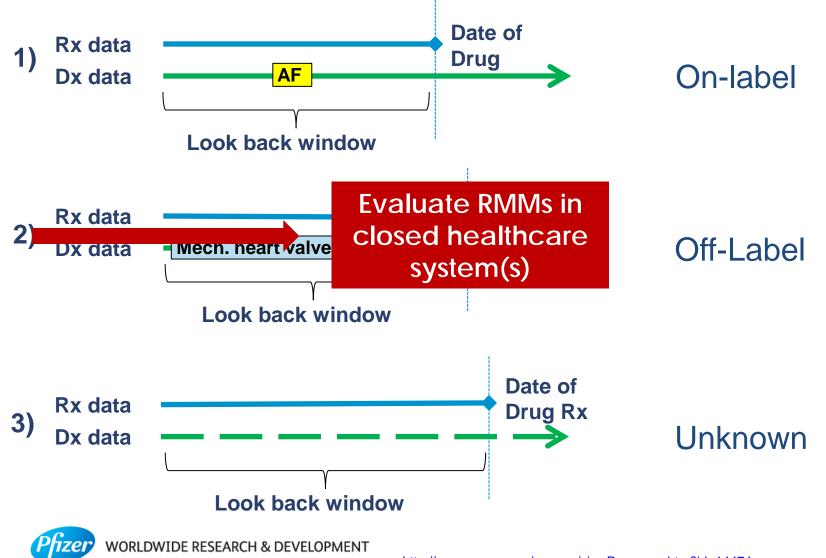

Gerald J. Dal Pan*

US Food and Drug Administration, Silver Spring, MD, USA

John D. Seeger^{1,3}

Impact of a 2010 label change for PPIs PPI Use Patterns and Incident Fractures in Sentinel (IMEDS)*


Results similar for prevalent users (data not shown)


WORLDWIDE RESEARCH & DEVELOPMENT

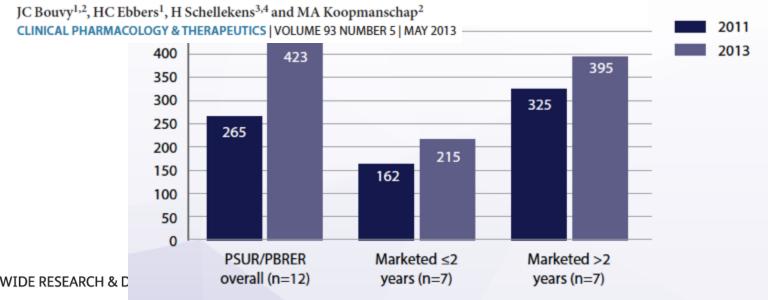
*Sobel RE et al. PDS 25(S1): S6. Results generated in pilot of Sponsor access to Sentinel tools and data system (RUF IMEDS)

Do physicians adhere to the apixiban SPC? A drug utilization study linking prescription & diagnostic data streams

Do physicians adhere to the apixiban SPC? A drug utilization study linking prescription & diagnostic data streams

EU legislation impact on Industry PV system More complex and resource intensive

Table 4: Areas of pharmacovigilance with biggest impact from new legislation

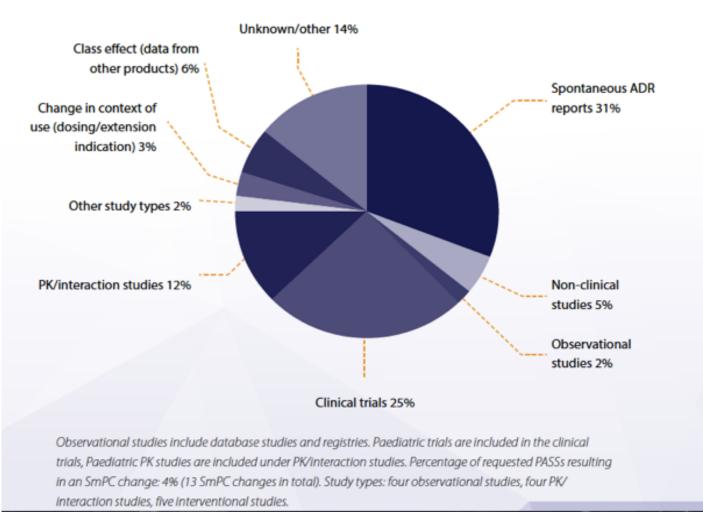

PhV areas that saw biggest impact of new legislation:	% of respondents	n	
Pharmacovigilance system master file	74%	19	
New PBRER format	74%	19	
Risk-management plans	63%	19	
Reporting of non-serious ADRs	32%	19	
Article 57 requirements	26%	19	

PRAC

PRAC: Pharmacoviailar

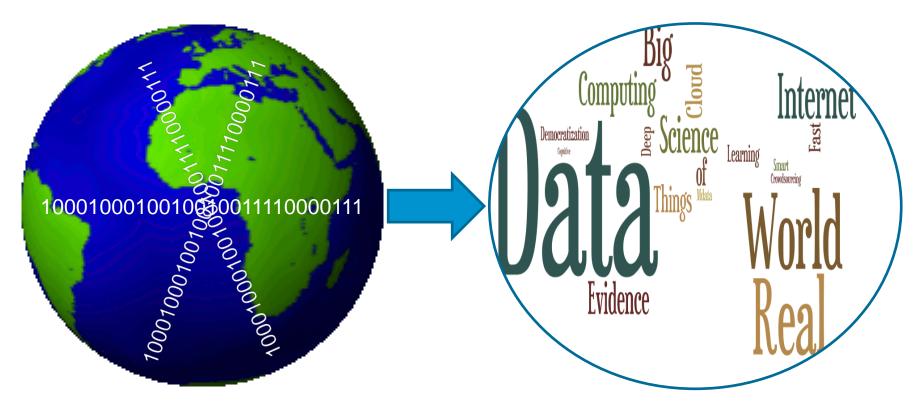
The Cost-Effectiveness of Periodic Safety Update **Reports for Biologicals in Europe**

urs)



WORLDWIDE RESEARCH & D

Escher report, 2014: pp. 60, 62


EU legislation impact on Industry PV system Source of safety information for label change

Measuring the Value of Innovation in PV Big data and advanced analytics

Digital data streams everywhere

Hope for better and faster insights

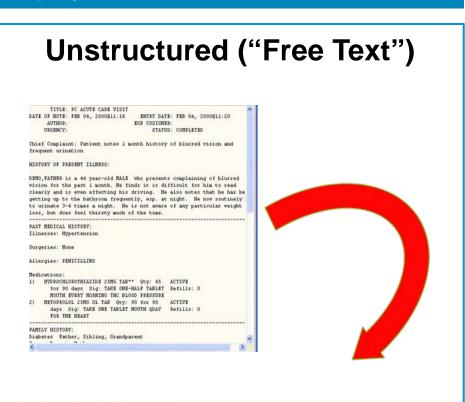
Hypothesis-free signal detection in EHR data

Alternative or complement to spontaneous reports?

Drug Saf (2015) 38:1201-1210 DOI 10.1007/s40264-015-0341-5 Key Points ORIGINAL RESEARCH ARTICLE Overall, a spontaneous reporting system (SRS) is ry better suited to detection of signals than an electronic I health record (EHR)-based system, especially for Useful Interplay Between Spontaneous ADR Reports certain types of reactions (rare events and those with a high drug-attributable risk). and Electronic Healthcare Records in Signal Detection Use of EHRs might be justifiable in some situation where SRSs perform poorly (e.g. outcomes with a high background incidence), provided that the Alexandra C. Pacurariu^{1,2} · Sabine M. Straus^{1,2} · Gianluca Trifirò^{1,3} · additional costs can be taken into account. Martijn J. Schuemie¹ · Rosa Gini⁴ · Ron Herings⁵ · Giampiero Mazzaglia⁶ · SRSs and EHR-based signal detection systems can Gino Picelli⁷ · Lorenza Scotti⁸ · Lars Pedersen⁹ · Peter Arlett¹⁰ · Johan van der Lei¹ · be complementary, the additional value of one to the other varying across events, as a function of the Miriam C. Sturkenboom¹ · Preciosa M. Coloma¹ background incidence of the event. Months relative to first prescription

No influential outliers

Cederholm S et al. Drug Safety 38(1), 87-100, 201; Hauben M et al. PDS 25(S1): S441, 2016; Hauben M et al. Drug Safety 39 (10), 1015, 2015


Does NLP-derived data improve safety information from structured EHR data?

NLP in Electronic Medical Record (EMR) Systems

Structured ("Coded")

	Gender (M/F)	Age	Weight (Ibs.)	Height (in.)	Smoking (1=No, 2=Yes)	Race
Patient #1	М	59	175	69	1	White
Patient #2	F	67	140	62	2	Black
Patient #3	F	73	155	59	1	Asian
Patient #75	М	48	90	72	1	White

Demographics. diagnoses, procedures, Rx, lab orders &/or results, billing, operations data

HISTORY OF PRESENT ILLNESS:

)ENO, FATHER is a 44 year-old MALE who presents complaining of blurred fision for the part 1 month. He finds it is difficult for him to read :learly and is even effecting his driving. He also notes that he has be

For an applied example (acute liver injury) see Walker A et al.. Int J Medical Informatics 86: 62-70, 2016; Zhou X et al.. PDS 23(S1): S397, 2016

Social big data – does it contribute to PV?

Digital Social Media

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.4090

ORIGINAL REPORT


Can social media data lead to earlier detection of drug-related adverse events?

Mei Sheng Duh^{1*}, Pierre Cremieux¹, Marc Van Audenrode², Francis Vekeman², Paul Karner¹, Haimin Zhang² and Paul Greenberg¹

¹Analysis Group, Inc., Boston, MA, USA ²Groupe d'analyse, Ltée, Montréal, QC, Canada

Social big data – does it contribute to PV?

²Groupe d'analyse, Ltée, Montréal, QC, Canada

However beautiful the strategy, you should occasionally look at the results*

Creates the foundation for an adaptable, learning PV system based on rigorous outcomes assessment

Provides a transparent framework for evaluating the performance of system-wide PV strategies

Helps us identify when and why people behave in unexpected and risky ways

Optimizes the benefit-risk profile of medicines for patient well-being

Concluding thoughts...refine, replace, retire lest the beautiful strategy to nowhere

- Assess real world outcomes of regulatory actions to identify opportunities for improvement
- Create a learning system to measure how the value of these actions change over time
- Re-allocate effort if these actions do not achieve the objective of public health and patient wellbeing

