

Impact of VMPs on resistance development

What is the impact of using multiple active products with overlapping activity to prevent or delay the development of resistance?


IFAH-Europe Thomas Geurden (DVM, PhD, Dipl EVPC)

AR management

Options for management of AR

- Maintaining adequate refugia of susceptible worms, mainly on pasture
- Treatment when needed → targeted treatment principle
- Treatment with effective drugs = minimise the opportunity for resistance genes to be selected in a population
- Combinations of two or more active molecules.

Announcement

World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) Guideline: Anthelmintic combination products targeting nematode infections of ruminants and horses

et al., 1995; Leathwick, 2012). Fixed-dose combination anthelmintic products appear to slow the development of resistance because they afford the highest possible kill of nematodes (Bartram et al., 2012). Parasites that survive one

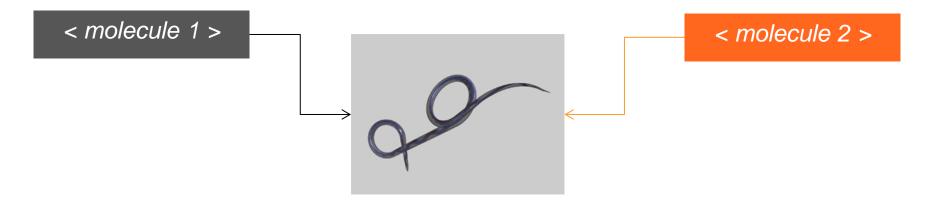
Combination therapy

Combination therapy is already used for the <u>control</u> of nematodes in livestock

- Use in sheep and later cattle nematode control was initially for <u>the control</u> of drug-resistant parasites
 - 2-way (*e.g.* benzimidazole + levamisole; macrocyclic lactone + levamisole; macrocyclic lactone + spiroindole)
 - 2. 3-way (e.g. benzimidazole + levamisole + macrocyclic lactone)
 - **3.** 4-way (*e.g.* benzimidazole + levamisole + macrocyclic lactone + salicylanilide).

Europe FEAH Representing the European Animal Health Industry

Benefits of combination products:


- 1. Increase potency of the chemotherapeutic product.
- 2. Increase the spectrum of activity.
- 3. Delay or prevent the emergence of drug resistance.
- Early modelling around use of **insecticides** suggested combinations are far superior to rotations or sequential use.
- Some disagreement, principally because of assumptions made (*e.g.* half-doses, treatment of whole population).
- General agreement that if the **right conditions are met**, combinations will greatly delay the development of resistance.
- Combinations are extensively used in treatment and/or control of malaria, HIV, tuberculosis, weeds, insect pests, cancer.

Rationale of combination therapy

Combination of two molecules efficacious against the same intestinal

nematodes, but through a different mechanism of action

Complementary action (key factor 1)

The parasite strains least sensitive to molecule 1 will be eliminated by the combined molecule 2 (and vice-versa).

Combinations slow resistance because

- fewer resistance genotypes survive treatment
- thereby increasing efficacy and the diluting effect with unexposed parasites

Europe

Representing the European Animal Health Industry

- *i.e.* maximise the benefit of 'refugia'
- The presence of 'refugia' is essential to realise the full benefit from combinations (key factor 2)
- In the complete absence of refugia a combination treatment has no advantage.

Combination therapy for the prevention of AR development in nematodes in livestock

- Four (five) nematode models built <u>independently</u> of each other:
 - Barnes, Dobson & Barger ('Worm World'; Australia) mono-specific but built into a multi-species model for monepantel experiments.
 - Leathwick (New Zealand) general nematode disease.
 - Learmount & Taylor (UK) multi-species.
 - Smith (USA) mono-specific; general nematode disease.
 - Dobson & Hosking (AUS) Risk Management Model for Nematodes[™] multispecies/cost-benefit.
- Leathwick has undertaken empirical studies to validate his model.

- Key outputs from these models are consistent:
 - Combination anthelmintics will select for drug resistance more slowly than any single drug strategy.
 - Combinations are of most benefit when the (initial) frequency of resistance alleles is low.
 - Drugs affected by resistance still provide valuable efficacy when used in combination (and with appropriate refugia).

The model and experimental results support the use of combination anthelmintics as a tool to **delay the development of resistance**, ideally before resistance to their constituent actives is well developed.

Reversal to susceptibility?

Annual rotation of drench classes will slow the development of resistance: if resistant worms are less fit than susceptible worms then reversion toward susceptibility will occur in the years when an alternate drench class is used.

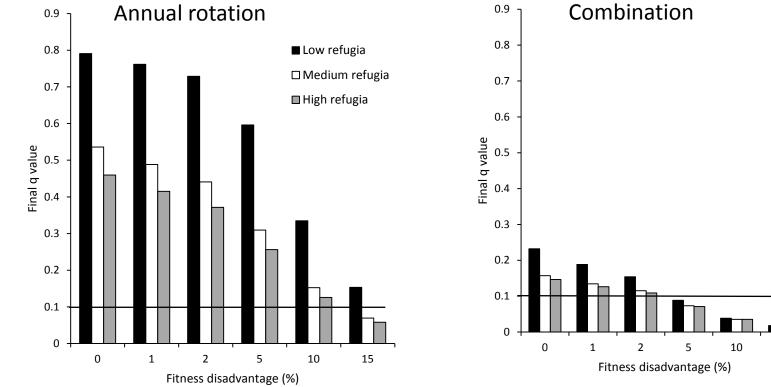
Reversal to sucseptibility

International Journal for Parasitology: Drugs and Drug Resistance 5 (2015) 9-15

Evidence for reversion towards anthelmintic susceptibility in *Teladorsagia circumcincta* in response to resistance management programmes

Dave M. Leathwick, Siva Ganesh, Tania S. Waghorn *

AgResearch Grasslands, private Bag 11008, Palmerston North, New Zealand


- Reversion towards susceptibility occurred **with both rotation and combination** but was more pronounced and occurred at lower fitness costs when a combination was used
- i.e. the combination appeared to be 'better' at achieving reversion than the rotation

Reversal to susceptibility

15

Provided to the constraint of the second statements of the second state

Conclusions

- The models and experimental results support the use of combination anthelmintics as a tool to manage and delay the development of resistance, in conjunction with appropriate resistance management strategies (refugia).
- Reversion towards susceptibility was 'better' achieved by combination treatment reversion than by rotation treatment

IFAH AR Task Force

Thomas Geurden	Zoetis
Barry Hosking	Elanco
Steffen Rehbein	Merial
Cornelia Schleunter	MSD
Gertraut Altreuther	Bayer
David John	IFAH-Europe

Dave Leathwick (AgResearch New Zealand) is acknowledged for providing some graphics from his work on reversion.

THANK YOU