Intestinal Pseudo-obstruction (Gut Motility Disorders)

Nikhil Thapar

Division of Neurogastroenterology & Motility
Department of Paediatric Gastroenterology
Great Ormond Street Hospital & UCL Institute of Child Health
Gastrointestinal Tract
functions dependent on gut motility
Gut Motility
complex regional patterns

Gut Motility Disorders
failure of gut neuromusculature
Paediatric Gastrointestinal Motility Disorders
rare, diverse and challenging

1:500,000

Oesophageal Achalasia

1:100,000

Intestinal Pseudo-obstruction

1:5,000

Hirschsprung's disease

Intractable or slow transit constipation

Anal Incontinence

Burns & Thapar (2014)
Nature Reviews Gastro Hepatol
Chronic Intestinal Pseudo-obstruction
Failure of function of the small intestine

- Symptoms/signs of small intestinal obstruction but no mechanical cause
- Dilated small intestine with fluid levels
In infants CIPO appears to have a particularly severe course
- 60%–80% requiring parenteral nutrition and
 Faure et al. Dig Dis Sci 1999
 Muto et al. JPS 2014

Intestinal transplantation

Soh et al. JPS 2015
Paediatric Intestinal Pseudo-obstruction
Great Ormond Street Hospital data pre-2012

Delayed referral and/or diagnosis
• 11.3 years

Repeated unnecessary abdominal surgeries
• 3-5 surgeries before referral to tertiary centre

Poor feed tolerance
• ~100% on parenteral nutrition

Complications (morbidity, hospitalisation days, mortality)
• 90 days a year in hospital, 20-30% mortality, PN related complications

Poor quality of life
Paediatric Intestinal Pseudo-obstruction
Epidemiology

North America - NASPGHAN Survey
- 100 infants are born in the United States every year with CIPO
- incidence of approximately 1 per 40,000 live births
- Equal sex incidence

Japan - Nationwide survey
- children younger than 15 years of age the prevalence of 3.7 in one million children (1 in 270,000 children)
- 56.5% developed CIPO in the neonatal period
- Equal sex incidence

Vargas et al JPGN 1988
Muto et al. JPS 2014
Paediatric Intestinal Pseudo-obstruction

Pharmacotherapy

- Anticholinesterase inhibitors
 - Neostigmine, Pyridostigmine, Donepezil
- 5HT$_4$ Receptor Agonists
 - (Cisapride, Tegaserod withdrawn)
 - Prucalopride
 - TD-5108
- Motilin Agonists / Ghrelins
- Octreotide
- Cannabinoids
- Opioid Receptor Antagonists
- Chloride Channel Activators
 - Lubiprostone
- Guanylate Cyclase Receptor Agonists
 - Linaclotide
- Antibiotics
Paediatric Intestinal Pseudo-obstruction

Pharmacotherapy

- Anticholinesterase inhibitors
 - Neostigmine, Pyridostigmine, Donepezil
- 5HT₄ Receptor Agonists
 - (Cisapride, Tegaserod withdrawn)
 - Prucalopride
 - TD-5108
- Motilin Agonists
- Octreotide
- Cannabinoids
- Opioid Receptor Antagonists
- Chloride Channel Activators
 - Lubiprostone
- Guanylate Cyclase Receptor Agonists
 - Linaclotide
- Antibiotics

Not tested in Children
Variable Efficacy
Unacceptable extra-intestinal Side Effects
Paediatric Intestinal Pseudo-obstruction Management

• Nutrition to preserve growth and development
 – Enteral feeds
 – PN

• Limit symptoms & improve quality of life
 – Medical Rx
 – Surgery
 – Psychology

• Prevent complications
 – Sepsis
 – Bacterial Overgrowth
Chronic Intestinal Pseudo-obstruction
Challenges

- Rare
 - need for national/international registries
 - collaboration

- Lack of clarity
 - aetiopathogenesis
 - diagnostic criteria
 - classification

- Lack of uniformity
 - available expertise
 - diagnostic protocols
 - management strategies
Table 1: Role of molecules produced by the gut mesenchyme or epithelium in ENS development

<table>
<thead>
<tr>
<th>Secreted ligand</th>
<th>Role in ENCCs</th>
<th>Phenotype of mouse ENS after perturbation</th>
<th>Evidence for role in Hirschsprung disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDNF (mesenchymal)</td>
<td>Promotes differentiation</td>
<td>Yes<sup>498</sup></td>
<td></td>
</tr>
<tr>
<td>Endothelin-3 (mesenchymal)</td>
<td>Promotes proliferation and migration; Edn3<sup>-/-</sup>: normal enteric neuron density<sup>105</sup></td>
<td>Yes<sup>90,152</sup></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Role of cell-surface molecules expressed by ENCCs in ENS development

<table>
<thead>
<tr>
<th>Cell-surface molecule</th>
<th>Role in ENCCs</th>
<th>Phenotype of mouse ENS after perturbation</th>
<th>Evidence for role in Hirschsprung disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>RET</td>
<td>Signaling</td>
<td>Tachyphylaxis<sup>165</sup></td>
<td>Yes<sup>49</sup></td>
</tr>
<tr>
<td>GFRA1</td>
<td>GPI linked GDNF receptor<sup>26</sup></td>
<td>Gfra1<sup>−/−</sup>: normal ENS<sup>2</sup></td>
<td>Yes<sup>347</sup></td>
</tr>
<tr>
<td>GFRA2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurotrophin-3 (mesenchymal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonic hedgehog (mesenchymal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian hedgehog (epithelial)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP2 and BMP4 (mesenchymal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netrin (epithelial)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semaphorin 3C (mesenchymal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurturin (mesenchymal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGF2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td>Signaling</td>
<td>Tachyphylaxis<sup>165</sup></td>
<td>Yes<sup>49</sup></td>
</tr>
<tr>
<td>GFRA1</td>
<td>GPI linked GDNF receptor<sup>26</sup></td>
<td>Gfra1<sup>−/−</sup>: normal ENS<sup>2</sup></td>
<td>Yes<sup>347</sup></td>
</tr>
</tbody>
</table>

Table 3: Transcription factors and cofactors expressed by ENCCs and their role in ENS development

<table>
<thead>
<tr>
<th>Transcription factor</th>
<th>Role in ENCCs</th>
<th>Phenotype of mouse ENS after perturbation</th>
<th>Evidence for role in Hirschsprung disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sox10</td>
<td>Progenitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TrkB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sox8</td>
<td>Acts with Sox10, maintains progenitors<sup>55</sup></td>
<td>Sox<sup>8</sup> or Sox<sup>8</sup>−/−: Increases severity and penetrance of Sox<sup>8</sup>−/− phenotype<sup>55</sup></td>
<td>ND</td>
</tr>
<tr>
<td>GFRα1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTCH1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β1-integrin (ITB1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1-CAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-cadherin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuregulin-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoxb5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: ENCC intracellular molecules, neurotransmitter-related molecules and dietary factors involved in ENS development

<table>
<thead>
<tr>
<th>Intracellular molecule</th>
<th>Role in ENCCs</th>
<th>Phenotype of mouse ENS after perturbation</th>
<th>Evidence for role in Hirschsprung disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular molecule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRY2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asd1<sup>1</sup> (Mash1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-cadherin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuregulin-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoxb5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracellular molecule</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell Signalling Pathways

- **Gut Environmental Factors**
- **Transcription Factors**
- **Intracellular Molecules**
Neuro-immune interactions
role in gastrointestinal symptoms/disease

Ye et al
2008 J Cell Mol Med

Smyth et al
2013 Plos One

Serotonin (5H13, 5H1P)
PAR 1, 2 and 4
Histamine 1-4
CAM 1
IL-4
IL-13
Eotaxin
Eotaxin
IL-3
IL-5
GM-CSF
Etc...
Etc...
Etc...
Leukotrienes
MBP
Etc...

CGRP
Substance P
Acetylcholine
Noradrenaline

IL-4, 5, 13, TNF
Neuro-immune-microbiome interactions
role in gastrointestinal symptoms/disease

Ye et al
2008 J Cell Mol Med

Smyth et al
2013 Plos One

The Gut Microbiota

Serotonin (5HT₃, 5HT₁P)
PAR 1, 2 and 4
Histamine 1-4
CAM 1
IL-4
IL-13
Eotaxin
IL-3
IL-5
GM-CSF
Etc…

Leukotrienes
MBP
Etc…

IL-9
IL-4
IL-13
Etc…

Eotaxin
IL-9
IL-4, 13
Etc…

IL-4, 13
Etc…

GM-5

IL-4, 5, 13, TNF
Neuro-immune-microbiome-brain interactions role in gastrointestinal symptoms/disease

Serotonin (5HT3, 5HT1P)
PAR 1, 2 and 4
Histamine 1-4
CAM 1
IL-4
IL-13
Etc...

IL-9
IL-4
IL-13
Etc...

Eotaxin
Substance P
Acetylcholine

Gut Microbiota

Ye et al
2008 J Cell Mol Med

Smyth et al
2013 Plos One

Leukotrienes
MBP
Etc...

Eotaxin
IL-3
IL-5
GM-CSF

IL-4, 5, 13, T cells
Human studies

In vivo transplantation of post-natal neural stem cells

Dissociation into single cells

Rag2⁻/γc⁻/C5⁻ mouse

Natarajan et al, Neurogastroenterol Motil 2014