



Prof. John Porter Consultant Haematologist, UCL and UCLH

# Management of, and unmet needs in, Sickle Cell Disorders

## Declaration of Interests

- Silence Therapeutics- scientific advisory board, research funding
- Agios- advisory board
- Bluebird Bio- advisory boards
- BMS- advisory boards
- Vifor- advisory boards

# Outline

- Underlying mechanisms of SCD
- Clinical consequences
- Scale of the global challenge
- Therapeutic approaches to these mechanisms
  - Non-curative approaches
  - Curative approaches
- Unmet needs

## Mechanisms and consequences of SCD



# Range of Clinical Phenotypes of SCD according to steady-state Hb Level



ACS = acute chest syndrome; Hb = hemoglobin; PHT = pulmonary hypertension; VOC = vaso-occlusive crisis

## Complications of SCD in Children



## Complications of SCD in Adults

#### **Acute**

**Vaso-occlusive painful crises** 

**Acute chest syndrome** 

Infections (hyposplenism) & Iron

Acute anaemia

**Splenic sequestration** 

**Parvovirus** 

**Priapism** 

**Stroke** 

## Scale of the global challenge- births

- Commonest inherited disorder of humans
- Historical distribution Reflects advantage of AS against malaria
   (Subsaharan Africa, Middle East, India, Mediterranean)
- Contemporary distribution Reflects migration patterns
- Carrier rates (AS)
  - Subsaharan Africa ~20%
  - Afro-Caribbeans ~13%
  - India ~1-40 % patchy (Verma, Colah. WHO 2008)
  - USA ~1% (3M out of 303M)
  - UK ~1.6% (pregnant carriers)
- Birth rates with SCD
  - Worldwide ~ 300,000 births pa increasing to 404,000 by 2050 (Piel et al 2013)
  - Subsaharan Africa ~ 2% of births (150k pa Nigeria, 160M population)
  - Saudi Arabia ~ 0.5% of births (El-Hazmi et al, 1997)
  - India ~ 20,000 births pa (Verma, 2008)
  - UK ~ 0.056 % of births (NHS screening program)
    - ~ 270 births pa

## Scale of the SCD global challenge- deaths

# Sickle cell disease—global mortality burden is nearly 11 times higher than recorded

A Lancet study—the first to estimate the full global mortality burden of Sickle Cell Disease (SCD)—has revealed a strikingly high contribution of SCD to all-cause mortality that is not apparent when each death is assigned to only a single cause.



### Subsaharan Africa and South Asia bear the brunt of the mortality burden in SCD

SCD-related deaths in 2021, by GBD super-region

Cause-specific deaths Total mortality Central Europe, Latin America North Africa and Southeast Asia, east Sub-Saharan High-income South Asia eastern Europe, and and Caribbean Middle East Asia, and Oceania Africa countries central Asia 3 35 4080 14 000 1360 89 900 176 29 400 265 000 596 2 720 1330 1 510 744 (11.7x)(66.1x)(4.6x)(3.1x)(9.3x)(4.2x)(9.0x)



Over half a million babies were born with SCD in 2021 — more than three quarters of whom were born in sub-Saharan Africa.

## Management strategies: Prevention, Care, Modification or Cure?

#### Screening and education of at-risk couples

- Newborn screening
- Counselling Prenatal + Premarital
- Maternal carrier testing
- Prenatal diagnosis

#### Prevent and treat acute complications

- Train doctors, nurses and patients to:
- Prevent and treat infections (esp. pneumococcal)
- Prevent painful crises –education of patients and parents about risks
- Recognize complications early (chest syndrome)
- Educate about splenic sequestration especially
- Treat pain rapidly and effectively
- Stroke primary and secondary prevention

#### Prevent long term organ damage

- Stroke & Cognitive loss
- Renal disease
- Pulmonary hypertension

#### Specific anti-sickling options

- Transfusion
- Hydroxyurea
- New medications

#### Curative

- Stem cell transplantation
- Gene Therapy

## Therapeutic approaches mechanistically

## **♦**HbS &↑HbA

- Blood transfusion
- Allogeneic HSCT
- Gene additione.g. lentiglobin BBB

### **↓** Hb polymerisation rate

- Increase Hb F %
  - Hydroxyurea)
  - Gene therapy BCL11A
- Modify Hb -increase O2 binding
   Voxelator

## 



Red cell energy (ATP)

e.g. mitapivat

Or O2 affinity
e.g. (voxelatpr)

Sequestration

Red cell endothelial interaction

Vaso-occlusion

- P Selectin anagtonists e.g *Crisanlusimab*
- Complement inhibition

#### Microvascular obstruction

- Acute painful crises
- Chronic progressive organ damage

# Survival in paediatric patients has significantly improved

- Why ?
  - Vaccinations
  - Antibiotics
  - TCD monitoring
  - Transfusions
  - Neonatal screening
  - Comprehensive care



- Overall survival at 18 years of age
- •93.9% HbSS/HbSβ<sup>0</sup>
- •98.4% HbSC/HbSβ+

- Dallas 2000–2007
- London 1983-2006
- Dallas 1983–1990
- CSSCD Infant 1978–1988
- Jamaica 1979–1981
- Jamaica 1973–1975

# Sickle cell patients demonstrated Increased Total Hb and HbF



CTX001™ for Sickle Cell Disease: Safety and Efficacy Results from the Ongoing CLIMB SCD-121 Study of Autologous CRISPR-Cas9-Modified CD34<sup>+</sup> Hematopoietic Stem and Progenitor Cells. European Hematology Association, June 9 - 17, 2021

### **Exagamglogene Autotemcel for Severe Sickle Cell Disease**

HSPCs edited with the use of CRISPR-Cas9



## Unmet needs 1- Scientific

## • Improve non-curative therapies

- To improve impact of morbidity and mortality?
  - New molecules / agents
     e.g. will the combined use of modalities have additive benefit ?

### Improving curative therapies

- HSCT (stem cell transplant)
  - Extending the range of potential donors
    - Extending the use and safety of haploidentical transplants
  - Conditioning regimens that do no involve myeloablative chemotherapy
  - Conditioning regimens that avoid infertility
- Gene therapies
  - Conditioning without myeloablation
  - Without effects on fertility
  - Without procedure related morbidity/mortality
  - Cost

## **Unmet needs 2- Organisational**

- Wider application of prevention programs
- Training and motivating of staff
  - Education of haematologists is dominated by oncologists
  - Chronic genetic disease is unattractive to many trainees
  - Education needs to increase exposure of all young doctors and nurse specialists to sickle disorders
  - Need to make attractive intellectually and financially to trainees
  - Stakeholder panels for case discussion & policy decisions
- Infrastructure/funding how do health systems cope with ?
  - Increasing demand numerically from HbSS patients
  - Increasing number and cost of new treatments

# Thank you