Illustration: δ =0.4%, σ =1.2% *n*=35 per-arm per-stage

- Do all experimental treatments share a common effect?
- E.g experimental arm estimate
 y_i = μ + ε_i where Var(ε_i) is variance
 of y_i
- Use Cochran's *Q* statistic to test null hypothesis.
- Here, p-value for Q is 0.5: No evidence to reject common effect (μ) hypothesis
- Pooled 'fixed effect' estimate for μ justified
- Compare pooled estimate's Confidence intervals to that of control group and declare class effective if no overlap

Heterogeneity between experimental treatments

- Perhaps treatments don't share a common effect?
- E.g experimental arm estimate
 y_i = μ_i + ε_i where Var(μ_i) is
 between arm variation
- Between arm variation as a propⁿ of total variation: I² = 50%
- *Q* statistic *p*-value=0.09
- Pooled 'random-effects' estimate for μ (= mean of μ_i s) arguably justified
- likely to be very similar to fixed effect estimate
- Wider confidence interval to acknowledge extra uncertainty. Lower power, but arguably right model

Issues surrounding dropped treatments

- Assume arm 1 & 4 dropped at interim (after 35 patients)
- Dropped trials have less precise estimates than kept trials
- Should we exclude dropped arms when estimating pooled effect?
- Exclude: PROS: Remaining arm results more homogeneous. Likely to opt for a fixed effect estimate. CONS: Remaining arms potentially biased, throwing away information
- Include: PROS: Using all available information. CONS: Confidence interval may still be wider due to use of random effects model.