EMA EFPIA M&S Workshop Break-out session no. 4 Theme 3 - M&S to characterize risk-benefit and support label claims

Decisive support of Modeling & Simulation for getting drug approval of non-tested dosing scheme : 2 examples

Valérie Cosson F. Hoffmann–La Roche Ltd

BOS4 : Position statement and associated questions

Successful approval of non-tested dosing scheme using M&S techniques without further dedicated prospective studies

- Would in general the EMA accept the principle of relying on M&S approaches to label an unstudied dose or dosing regimen?
- What information and evidence are needed by the EMA to consider to label an unstudied dose or dosing regimen based on M&S approaches?
- In what circumstances would the EMA accept exposures in a sub-population outside the range of previously tested exposures in that subpopulation but within the range of previously tested exposures in an other sub-population?

BOS4 : Extended Questions

- If the Sponsor demonstrates that:
 - The pharmacology and the mechanism of action of the drug are well known,
 - The exposure-response relationships for efficacy and safety in the target population are adequately characterized,
 - The covariate effects are known,
 - Enough confidence in the models to simulate response in a specific sub-population within the range of previously studied exposure:
 - All of the proof of the model robustness using classical technique (gof plots, SE, VPC, PPC...) are provided
- In which cases
 - The EMA would only rely on the simulations to label an unstudied dose or dosing regimen ?
 - The EMA would still ask to confirm in an additional study ?

BOS4 : Extended Questions

- In which cases
 - The EMA would only rely on the simulations to label an unstudied dose or dosing regimen ?
 - The EMA would still ask to confirm in an additional study ?

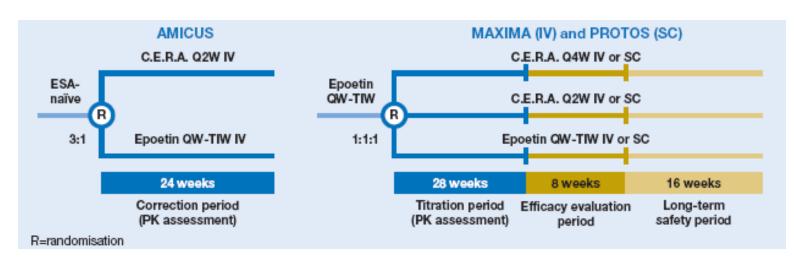
	Significant Benefit in life-threatening disease	Prevention or delay of long term disease with high morbidity mortality	Symptomatic treatment
AEs that can be monitored and treated	M&S only?	M&S only?	M&S only?
Safety signals with clear predictive indicators	M&S only?	M&S only?	M&S only?
Safety signals without clear predictive indicators	M&S + Additional data?	M&S + Additional data?	??

Background

- What has triggered the changes in dose (and dose adjustment rules) compared to the original plan?
- Changes of regulatory recommendation on endpoint target range: the example of C.E.R.A (Continuous Erythropoietin Receptor Activator), a new erythropoietin stimulating agent (ESA) for the treatment of anemia in patients with chronic kidney disease (CKD).
 - BLA and MAA were submitted to both FDA and EMA based on an hemoglobin (Hb) target range of 11 to 13 g/dL.
 - After submission, FDA modified the Hb target range to II to I2 g/dL (as optimal target range) and avoid Hb > I3 g/dL for safety concern.

Background

What has triggered the changes in dose (and dose adjustment rules) compared to the original plan?


- Less efficacy in an identified sub-population: the example of ribavarin in HCV genotype-I patients with normal transaminases (ALT)
 - A lower dose than the recommended one for HCV genotype-1 infected patients with elevated ALT was used in patients with normal ALT
 - Less efficacy i.e. sustained virologic response (SVR) was observed in this population compared to the patients with elevated ALT

Rationale and objectives of the M&S analyses

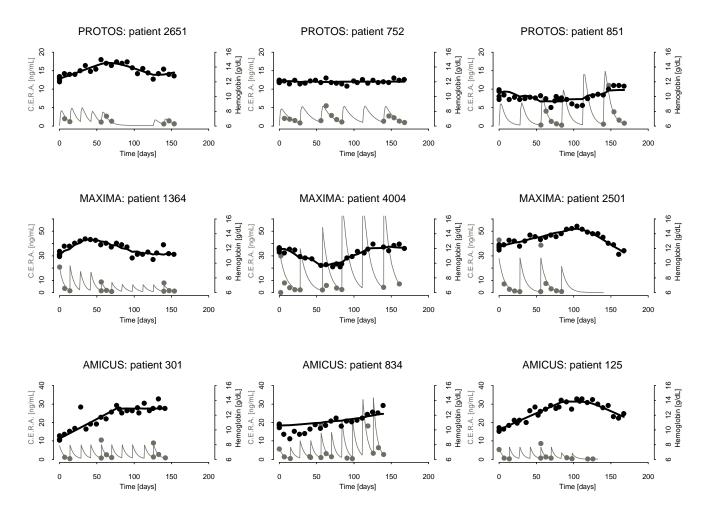
- In both examples, the knowledge of the exposureresponse relationship was considered sufficient to rely on M&S approaches to investigate new doses
- Clinical trial simulations were conducted to assess efficacy and safety clinical outcomes of non-tested dosing scheme (and dose adjustment) proposed in the SmPC (Summary of Products Characteristics)

Available Data for C.E.R.A.

- Data from 400 patients of 3 open-label, randomized, multicentre, parallel-group Phase III studies, AMICUS, MAXIMA and PROTOS
- The PK assessment period in **AMICUS** was the 24-week correction period. The PK assessment period in both **MAXIMA** and **PROTOS** was the 28-week dose titration period.
- The Hb assessments were performed weekly in the three Phase III studies during the correction or titration periods.

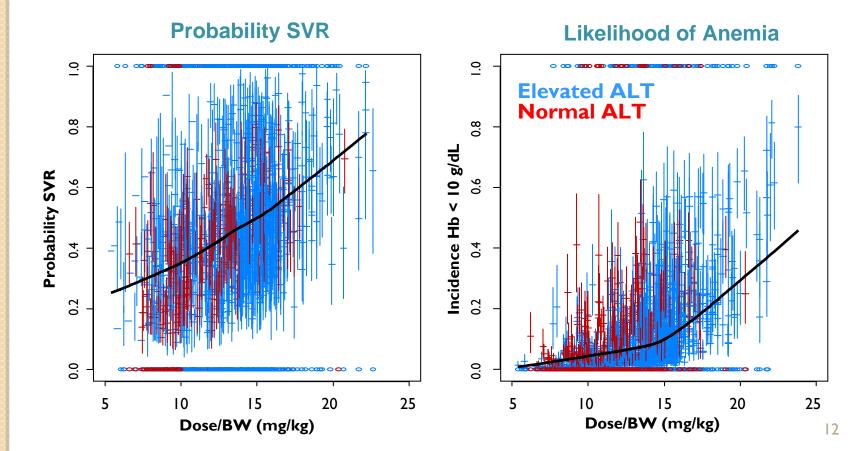
Available Data for Ribavirin

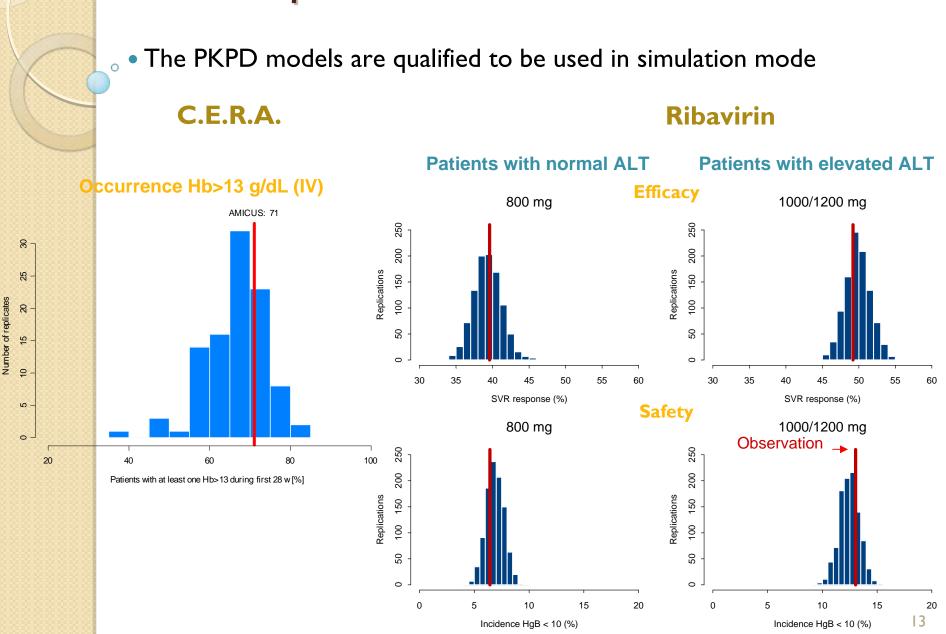
- For model development, SVR and Hb data from genotype-I infected CHC patients with elevated ALT levels receiving a ribavirin treatment of 48 weeks were used:
 - 817 patients for GAM development of SVR
 - 1233 patients for GAM development of incidence of anaemia
- For the assessment of dose in genotype-1 infected patients with normal ALT levels receiving a daily dose of 800 mg ribavirin for 48 weeks, SVR data from 138 patients and Hb data from 206 patients were used


Methods

- Development of PKPD models using available data.
- Evaluation of the predictive performance of the PKPD models by visual predictive check and posterior predictive check on defined metrics
- Simulations to evaluate the efficacy and safety of alternative dosing scheme.

The Exposure-Response Analysis for C.E.R.A.


Observed and predicted Hb concentrations in individual patients selected from PROTOS, MAXIMA and AMICUS.


O

The Exposure-Response Analysis for Ribavirin

 The higher incidence of anemia in patients with normal ALT is due to a difference in percentage of female patients (61% for normal ALT versus 33% for elevated ALT)

Model qualification

M&S Results: Simulation of efficacy and safety of non-tested dosing scheme and dose adjustment rules of C.E.R.A.

- With 0.3 µg/kg/w IV or SC every 2 weeks, the median predicted occurrence of Hb>13 g/dL was decreased down to 41% and 26.5% respectively compared to 71% in AMICUS.
- With 0.3 µg/kg/w IV and SC given every 2 weeks, the median response rate (percentage of patients with Hb≥11 g/dL and ∆Hb from baseline ≥1 g/dL at least once during the first 24 weeks of treatment) was 92.5% and 83% respectively. The value in AMICUS was 93%.

	0.3 μg/kg/w IV	0.3 µg/kg/w SC
Median predicted incidence >I3 g/dL	41.0 %	26.5%
Median simulated response rate	92.5 %	83.0%

M&S Results: Simulation of efficacy and safety of non-tested dosing scheme of Ribavirin

• At 1000/1200 mg, the SVR in patients with normal ALT is predicted to be similar to patients with elevated ALT

	800 mg	1000/1200 mg
Elevated ALT	40% (36%-45%)	49% (46%-53%)
Normal ALT	39% (34%-44%)	48% (42%-53%)

 At 1000/1200 mg/day, the incidence of anaemia in patients with normal ALT is predicted to be higher than in patients with elevated ALT, especially in females

	1000/1200 mg	
	Females	Males
Elevated	23%	8%
ALT	(19%-27%)	(6%-10%)
Normal	31%	%
ALT	(24%-38%)	(7%- 6%)

M&S Results: Simulation of efficacy and safety of non-tested dosing scheme of Ribavirin

• At 1000/1200 mg, the SVR in patients with normal ALT is predicted to be similar to patients with elevated ALT

	800 mg	1000/1200 mg
Elevated ALT	40% (36%-45%)	49% (46%-53%)
Normal ALT	39% (34%-44%)	48% (42%-53%)

 At 1000/1200 mg/day, the incidence of anaemia in patients with normal ALT is predicted to be higher than in patients with elevated ALT, especially in females

	1000/1200 mg	
	Females	Males
Elevated	23%	8%
ALT	(19%-27%)	(6%-10%)
Normal	31%	%
ALT	(24%-38%)	(7%- 6%)

Conclusions

- The trial simulations have shown that new dosing scheme proposed in SmPC ensures good efficacy and manageable the safety risk.
- 2. Thanks to Modeling and Simulation techniques additional confirmatory trials can be avoided.

Regulatory Feedback

- The new dosing scheme and dose adjustment for C.E.R.A. were approved by EMA and FDA
- EMA accepted the changes in the label
 - The dose of 1000/1200 mg Ribavirin is not limited only to patients with elevated transaminases
 - The risk of developing anemia is higher in the female population

BOS4 : Position statement and associated questions

Successful approval of non-tested dosing scheme using M&S techniques without further dedicated prospective studies

- Would in general the EMA accept the principle of relying on M&S approaches to label an unstudied dose or dosing regimen?
- What information and evidence are needed by the EMA to consider to label an unstudied dose or dosing regimen based on M&S approaches?
- In what circumstances would the EMA accept exposures in a sub-population outside the range of previously tested exposures in that subpopulation but within the range of previously tested exposures in an other sub-population?