A modeling and simulation perspective on extrapolation

EMA Workshop on extrapolation of efficacy and safety in medicine development across age groups, 17 – 18 May 2016, European Medicines Agency, London

Ine Skottheim Rusten
on behalf of the Modeling and Simulation Working Group (MSWG)
What facilitates informed extrapolation?

**Knowledge!**

Integrate existing evidence

Use tools to enable translation between the population and the individual patient

The synergetic value of adding information and means of interpretation to the pool of knowledge
Decision making

Expert opinion
= estimation or prediction

Warning of past events:
A change in paradigm!
Modeling and simulation

The philosophy of M&S
and why should clinicians and regulators encourage explicit quantitative modeling?

A method to test our understanding
of a particular system or process
• useful to describe a set of data
• can integrate different sources of data
• helps making assumptions explicit
• helps identify uncertainty and can help explore impact of uncertainty
• leads way to predictions to inform transitions

The sign of a mature science
- > not only describe, but able to predict
Dose Exposure Response (DER)

**Paediatric models**
- Size models (weight, BSA, allometry)
- Maturation models
- Organ function models
- Co-variate models
- Exposure response models
- Disease models

\[
C = C(0) \times e^{(t \times k)}
\]

\[
C = C(0) \times e^{(t \times CL/V)}
\]

\[
CL_{\text{child}} = CL_{\text{adult}} \times (BW_{\text{child}} / BW_{\text{adult}})^{0.75}
\]
The value of modelling system data extends beyond product specific product development questions and can facilitate drug development as a whole.
Tool box for pharmacological M&S

Empirical (Top-down)
- Population PK-PD
- Cross sectional D-R or E-R
- Longitudinal D-E-R
- Interventional disease models

Mechanistic (Bottom-up)
- Physiologically based PK-PD
- Quantitative systems pharmacology

Combine methods to use all existing knowledge

Optimal design and clinical trial simulations to optimize trial design
Framework for M&S in Regulatory Review

High impact

Scientific Advice, Supporting Documentation, Regulatory Scrutiny

Medium impact

Scientific Advice, Supporting Documentation, Regulatory Scrutiny

Low impact

Scientific Advice, Supporting Documentation, Regulatory Scrutiny

From EMA-EFPIA Modelling and Simulation Workshop, December 2011
Challenges and opportunities

• Generate the data
  • Optimize the individual adult developments on formulations, dosing rationale, validation of endpoints
  • Optimize the individual pediatric developments (extrapolation concept planning, powering, inclusion of PD endpoints, addressing the clinically important gaps with appropriate methodologies)
  • Agree PIPs with learning objectives on the systems knowledge
  • Expand HTA models for relative effectiveness to be appropriate also for benefit-risk evaluations and extrapolation purposes?
  • Initiatives to address pediatric issues at the academic and public/private level at the disease level?

• Share the data and qualify the evidence and models
  • Precompetitive collaborative initiatives across companies
  • Regulatory databases to look across developments. *A role for EMA?*
  • Crowdsourcing the validation of models?
Enabling approaches

- Dose exposure response data
- Availability of qualified biomarkers and modeling approaches
- Methodology to assure continued qualification of evolving models
- Systems data

Thank you!
Modelling and Simulation principles and tools for extrapolation

EMA Workshop on extrapolation of efficacy and safety in medicine development across age groups


Piet van der Graaf
Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation

EFPIA MID3 Workgroup: SF Marshall1, R Burghaus1, V Cosson2, SYA Cheung3, M Chene4, O DellaPasqua5, N Frey3, B Habrian2, L Harnisch3, F Ivanow8, T Kerbusch3, J Lippert2, PA Milligan1, S Rohou10, A Staab11, JL Steiner12, C Torme13 and SAG Visser14

This document was developed to enable greater consistency in the practice, application, and documentation of Model-Informed Drug Discovery and Development (MID3) across the pharmaceutical industry. A collection of “good practice” recommendations are assembled here in order to minimize the heterogeneity in both the quality and content of MID3 implementation and documentation. The three major objectives of this white paper are to: i) inform company decision makers how the strategic integration of MID3 can benefit R&D efficiency; ii) provide MID3 analysts with sufficient material to enhance the planning, rigor, and consistency of the application of MID3; and iii) provide regulatory authorities with substrate to develop MID3 related and/or MID3 enabled guidelines.


Appendix Table 1 Summary of number of papers for each of eight identified application types across the drug development phases

<table>
<thead>
<tr>
<th>Application Type (below) / Development Phase (right)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target selection and validation</td>
<td>3</td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Candidate comparison, selection, human PK and dose prediction</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Study design optimization</td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Predicting and characterizing ADME including intrinsic and extrinsic factors impacting PK variability</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Risk/Benefit characterization, and outcome prediction from early clinical responses</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Dose and schedule selection and label recommendations (including drug combinations)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Comparator / Standard-of-Care differentiation and commercialization strategies</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Patient population selection and bridging between populations (pediatrics, elderly, obese)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Total: 3 16 13 3 13 4 12 103

N=9

paediatric
Virtual issues are collections of articles on a particular subject, published in CPT: Pharmacometrics & Systems Pharmacology. They will be updated on a regular basis by the Editor-in-Chief.

The following virtual issues are available:

- Cancer
- Diabetes
- Infectious Diseases
- PBPK Modeling
- Pediatrics
- Reviews
- Tutorials

ORIGIONAL ARTICLE

Model-Based Assessment of Dosing Strategies in Children for Monoclonal Antibodies Exhibiting Target-Mediated Drug Disposition

S Zheng1, P Gaitonde1, MA Andrew1, MA Gibbon1, LJ Lesko1 and S Schmidt1

Body weight/absolute metabolic ratio-based and/or tiered fixed dosing strategies are widely utilized for monoclonal antibodies with linear clearance to scale adult clinical doses to children. However, there is limited knowledge on whether or not body weight-based dosing strategies also yield comparable dose-concentration-response relationships in adults and children for monoclonal antibodies that exhibit target-mediated drug disposition. Our findings indicate that it is important to interpret pharmacokinetics information in a pharmacokinetics/pharmacodynamics context as similar systemic drug exposure in adults and children may not be reflective of the corresponding target occupancy. They further indicate that BW-based dosing is superior to fixed dosing for the same target concentration, whereas the opposite holds true for the same target amount in adults and children. Michaelis-Menten approximations yielded similar profiles compared to the full target-mediated drug disposition model for all simulation scenarios and may be used to guide the selection of appropriate dosing regimens in children.

CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e138; doi:10.1038/psp.2014.36; published online 1 October 2014
THE ZEBRAFISH AS MODEL FOR TRANSLATIONAL SYSTEMS PHARMACOLOGY: 
EXPANDING THE ALLOMETRIC SCALE IN VERTEBRATES WITH FIVE ORDERS OF MAGNITUDE

R.C. van Wijk¹, E.H.J. Krekels¹, V. Kantae², A.C. Harms², Y. Guo³, W.J. Veneman⁴, F.J. Verbeek³, T. Hankemeier², H.P. Spaink⁴, and P.H. van der Graaf¹

Systems Pharmacology Cluster, ¹Division of Pharmacology & ²Division of Analytical Biosciences, Leiden Academic Centre for Drug Research (LACDR), Leiden

---

**Quantification of morphine glucuronidation from neonates to adults**

\[ CL_{\text{adj}} = CL_{\text{pop}} \times BW^{0.5} \]

---

Wang C et al., Clin Drug Invest 2013

---

**Graph**: Log10 clearance (L/h) vs. log10 bodyweight (g)

- zebrafish_larvae
- rat
- cynomolgus_monkey
- chimpanzee
- human_(pediatric)
- chicken
- beagle_dog
- horse
- human_(adult)
- turkey
- pig
- mouse
- rabbit
- greyhound_dog

**Equation**: Slope total (no ZF) = 0.838
\[ R^2 = 0.835 \]
1. In mathematics, **extrapolation** is the process of estimating, beyond the original observation range, the value of a variable on the basis of its relationship with another variable. It is similar to **interpolation**, which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing meaningless results.

2. Extrapolation may also mean extension of a method, assuming similar methods will be applicable.

3. Extrapolation may also apply to human experience to **project**, **extend**, or **expand** known experience into an area not known or previously experienced so as to arrive at a (usually conjectural) knowledge of the unknown (e.g. a driver extrapolates road conditions beyond his sight while driving).

---

**Extrapolation versus Interpolation**

**DoS**

**RESPONSE**

**DOSE**

*Concentrati
Extrapolation using Quantitative Systems Pharmacology (QSP)

- Isoprenaline
- Prenerterol
A systems pharmacology model to explain developmental differences in sensitivity to drug-induced QT prolongation

Verena Gotta, Marc Pfister, John van den Anker, Piet H. van der Graaf

1Systems Pharmacology, Leiden Academic Center of Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
2University Children’s Hospital Basel, University of Basel, Basel, Switzerland

European Society for Developmental Perinatal and Pediatric Pharmacology (ESDPPP), Belgrade, 23-26th June 2015

1.1. Estimation of system-specific transduction parameters for translational preclinical-clinical scaling (dofetilide)

- maximal ΔQTc₉₀ via hERG-block: E₉₀human = E₉₀dog = 28% from baseline
- transducer ratio: 1
- Interpretation of E₉₀:
  - hERG-channel/Iₙₐ-density, and
  - %hERG/Iₚₐ-block leading to half-maximal ΔQTc

→ Equal ΔQTc₉₀ achieved in human at 60% lower hERG-block than in dog (1/3 = 26% in human vs 62% in dog), explained by a 2.4 x higher hERG-channel density in human and/or Iₚₐ-net contribution to cardiac repolarization.

**Fig 1:** Pharmacodynamics of dofetilide in preclinical (conscious dog) and clinical setting (healthy men): A: %hERG-block (from in vitro binding kinetic experiments) and B: ΔQT: (from in vivo studies).

**Fig 2:** Translational predictions from preclinical data and system-specific scaling parameters only (blue lines) are contrasted with reported clinical ΔQTc from indicated references (grey dots: digitized observations, black lines: predictions from respective clinical regression model).

1.2. External evaluation of translational predictions (sotalol & moxifloxacin)

Good clinical predictions in adults and children were obtained (<5-10 ms prediction discrepancy from clinical regression model until ΔQTc of 35 ms). However, QTc- effects in neonates were under predicted (>20 ms prediction discrepancy).
2. Refinement of system-specific transduction parameters for neonates

Re-estimated transducer ratio: τ_{neonates} = 1.77 · τ_{children}

→ Higher sensitivity of neonates to drug-induced ΔQTc explained by a 1.77 x higher hERG-channel density and/or I_{kr}-net contribution to cardiac repolarization than in older children (≈ adults), resulting in equal ΔQTc% at 43% lower hERG-block.

What it took to extrapolate a compound class:

- 3 Compounds
- 2 In vitro studies
- 14 Preclinical in vivo studies
- 28 Clinical studies
- 2+ FTE Years
Summary and Take Home

- **Within-population extrapolation (WPE; i.e. predicting a higher-than-tested dose)** is fundamentally different from **between-population extrapolation (BPE; i.e. predicting paediatric PKPD from adults):**
  - Statistical approach may work for WPE; no rational basis to decide why it could or could not work in BPE
  - **Quantitative frameworks for predicting system-dependency of pharmacological responses** have been:
    - Developed and adopted by the scientific community since the 1950’s
    - Boosted by recent interest in QSP
    - But (with the exception of PBPK) there is little evidence of adaptation in paediatric drug development

- **A shift is required from an individual study-study oriented extrapolation paradigm to a systems one:**
  - Scientifically, ethically, economically, logistically
  - Requires a joined-up approach moving away from a compound-centric focus
  - PBPK serves as an example of feasibility and demonstrable impact
KNOWN KNOWNS & KNOWN UNKNOWNS in USING VIRTUAL POPULATIONS for EXTRAPOLATION

Amin Rostami

Professor of Systems Pharmacology
University of Manchester, Manchester, UK
Matter of HOW not Matter of IF

In Silico Human
(for ADME)

ASCPT 2016 ANNUAL MEETING
MARCH 8-12, 2016 | HILTON BAYFRONT, SAN DIEGO, CA
ADVANCING THERAPEUTIC HORIZONS THROUGH GLOBAL COLLABORATIONS

ROUNDTABLE

How Should Simulated DDI Results be Communicated in the Label?

COMMUNITIES
Regulatory Science (RS), Pharmacometrics & Pharmacokinetics (PMK)

CHAIRS
Ping Zhao, PhD
US Food and Drug Administration, Silver Spring, MD

Vikram Sinha, PhD
US Food and Drug Administration, Silver Spring, MD

PANELISTS
Lawrence Lesko, PhD, FCP
University of Florida at Lake Nona, Orlando, FL

Joseph Grillo, PharmD
US Food and Drug Administration, Silver Spring, MD

Anna Nordmark, PhD
Swedish Medical Product Agency, Huddinge, Sweden

Jack Cook, PhD
Pfizer, Groton, CT
An age-related trend in the magnitude of DDIs could not be established. However, the study highlighted the clear paucity of the data in children younger than 2 years. Care should be exercised when applying the knowledge of DDIs from adults to children younger than 2 years of age.
Virtual children will take guesswork out of making the medicine go down

Using computers to test medicines could soon become routine, after the introduction of European Union regulations that require stricter testing for drugs intended for children.

Computer models that simulate the action of a drug on the body could hasten the development of new
How it is done? Integrating system information

Permeability-limited model are available for the intestine, liver, kidney, brain and lung.

- Transport across a membrane is often defined as Perfusion Limited
- But we now define uptake/efflux into/out of selected organs as Permeability Limited
What are the challenges? Variable ontogeny (enzymes/transporters)

(A)

(B)

(C)

(D)
Relative Importance of Pathways: “Ratio of Ratios”!

Age Related Changes in Fractional Elimination Pathways for Drugs: Assessing the Impact of Variable Ontogeny on Metabolic Drug–Drug Interactions

Farzaneh Salem, PharmD¹, Trevor N. Johnson, PhD², Zoe E. Barter, PhD², J. Steven Leeder, PharmD, PhD³,⁴,⁵, and Amin Rostami-Hodjegan, PharmD, PhD, FCP¹,²


Pathway A in Paediatrics
Pathway A in Adults
Pathway B in Paediatrics
Pathway B in Adults

Relative Ontogeny = 

X vs CYP1A2
X vs CYP2C9

Ratio X(adult/Paed):CYP1A2 (Adults/Paed)
Ratio X(adult/Paed):CYP2C9 (Adults/Paed)
What are the challenges? Reference point (systemic vs organ)

Compound PK \( X(t) \) \( \rightarrow \) Effect compartment \( X_e(t) \) \( \rightarrow \) PD Basic Response

\[ AUC_{tissue} = \frac{AUC_{sys} \cdot CL_{in}}{CL_{out}} \]

M. Jamei · F. Bajot · S. Neuhoff · Z. Barter · J. Yang · A. Rostami-Hodjegan · K. Rowland-Yeo
Drugs with Paediatric Application

Drugs known to be affected by liver transporters 175

Drugs of Paediatric Use
In the absence of changes in dynamics of binding:

\[ f_{u_{\text{neonate}}} = \frac{1}{1 + \left( \frac{[P]_{\text{neonate}}}{[P]_{\text{adult}}} \times \frac{(1 - f_{u_{\text{adult}}})}{f_{u_{\text{adult}}}} \right)} \]
Absence of info on free local concentrations: Sensitivity???

Ontogeny of Plasma Proteins, Albumin and Binding of Diazepam, Cyclosporine and Deltamethrin
Sethi; et al
*Pediatric Research* accepted article preview online
16 November 2015;
True vs Apparent PD Differences in Paediatrics

Effect vs Log Conc

Tyrosine hydroxylase (TH)

TH Protein Normalized

Rothmond et al., 2012