# Multivariate Analysis of treatment in Multiple Sclerosis using the Wei-Lachin procedure

Thomas Zwingers CROS DE GmbH Augsburg, Germany



### The problem

- Multiple endpoints with equal priority in MS:
  - progression of the disease measured through the Expanded Disability Status Scale (EDSS),
  - Standard Neurological Status (SNS),
  - Ambulation Index (AI),
  - the number of attacks requiring corticosteroid treatment,
  - time to the first attack requiring such treatment.



### **Nature of endpoints**

- EDSS is a scale ranging from 0 to 10 in steps of 0.5;
- Al is a scale ranging from 0 to 9 in steps of 1,
- SNS is a scale ranging from 0 to 99 in steps of 1;
- Number of attacks is a count variable and
- Time to 1<sup>st</sup> attack is a duration.



- There was no generally acceptable composite score that could be adopted.
- A Bonferroni adjustment was impractical due to the large number of endpoints.

**→** Multivariate Analysis



Additional medical requirement

None of the endpoints is allowed to be worse in the active treatment group

→ directional test



#### The solution

Multivariate test which is able

- to combine variables of different nature and
- to test directional alternatives

$$H_0: \Theta_k = 0$$
 for all k=1,2,3,4,5 (variables tested)

$$H_1$$
:  $\Theta_k >= 0$  for all k=1,2,3,4,5 with at least one k>0;

non-parametric test of O'Brien type
Wei-Lachin test



The test statistic Z derived from the Wei-Lachin procedure has an asymptotic normal distribution and is defined as:

$$Z = (J' \Theta) / [J' S J] 1/2$$

#### with

- Θ being the vector of Mann-Whitney-differences between the treatment groups;
- S being the covariance-matrix of Q and
- J being a vector of weights.

This test statistic is the nonparametric equivalent to Hotelling's one-sided parametric T<sup>2</sup> test.

### Study results

|                            | Placebo vs. 12 mg MTX                                |         |
|----------------------------|------------------------------------------------------|---------|
|                            | Mann-Whitney-difference<br>(95% confidence interval) | p-value |
| Global difference          | 0.2941 (0.1644 – 0.4239)                             | <0.0001 |
| Change in EDSS             | 0.2393 (0.0414 – 0.4373)                             | 0.0194  |
| Change in Al               | 0.2107 (0.0240 – 0.3974)                             | 0.0306  |
| No. Of attacks             | 0.3693 (0.1740 – 0.5645)                             | 0.0002  |
| Time to 1st treated attack | 0.4431 (0.1974 – 0.6888)                             | 0.0004  |
| Change in SNS              | 0.2302 (0.0299 – 0.4305)                             | 0.0269  |



### **Summary**

- Endpoints often have different nature (counts, scores, mean values, time to event)
- Non-parametric tests using the Mann-Whitney difference can be a solution
- Such tests are of special interest in closed testing procedures

