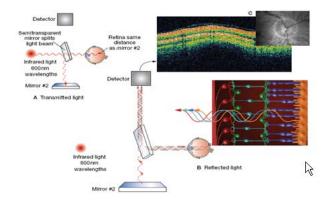


Optical coherence tomography: A role in monitoring multiple sclerosis Dra. Celia Oreja-Guevara Multiple Sclerosis Unit Head of Clinical Research

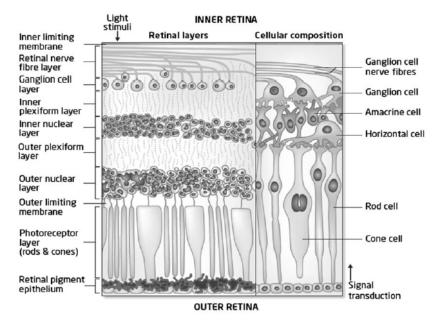

Hospital Clínico San Carlos, Madrid

Spain

London , 17.10.2013

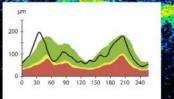
Optical coherence tomography

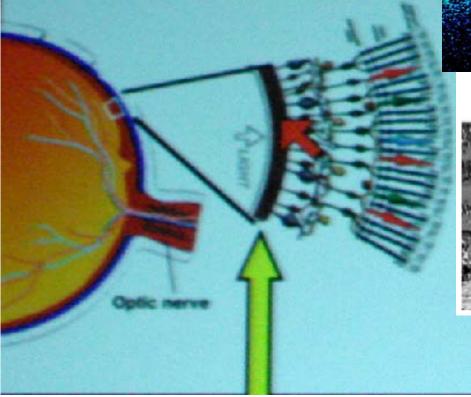
- Quick, non-invasive, quantitative,
- reproducible, cheap technology
- High resolution images
- Correlation with clinical parameters
- Sensible to longitudinal changes
- Creates precise image of retinal structures
- Enables the quantification of axonal and neuronal layers of the retina

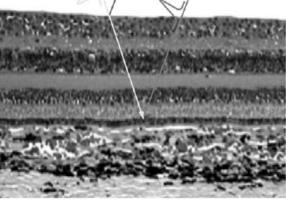


The OCT is useful to quantify the thickness of retinal nerve fiber layer (RNFL) and the macula.

The spectral-domain OCT (fourth generation) is capable of visualizing and quantifying specific layers of the retina with impressive precision.


The use of OCT to quantify axonal loss is a promising tool to evaluate the disease progression in MS.




Visual pathway

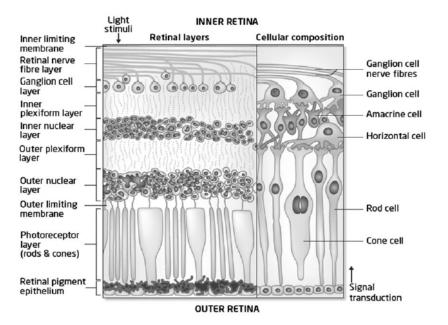
Retinal Nerve Fibre Layer (RNFL) Tomogram

RNFL thickness along the calculation circle is displayed in graphic format and compared to age-matched normative data

- Retinal nerve fibre layer
- Ganglion cell layer
- Inner plexiform layer
 Inner nuclear layer
- ← Outer plexiform layer
- ← Outer nuclear layer
- Photoreceptors
- Retinal pigment epithelium
- < Choroid

Retinal Nerve Fiber Layer (RNFL)

EVIDENCES OF LOSS OF RNFL


Healthy volunteers

Green. Et al, Brain 2010

The loss of RNFL is confirmed in different studies:

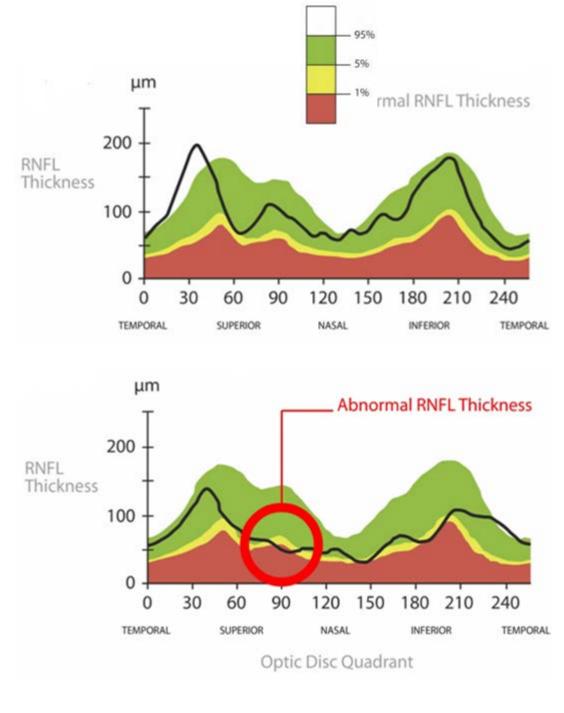
- In vivo (Saidha et al, Brain 2011; Syc et al., Brain 2011)
- in animals(Levkovitch et al. 2001)
- electrophysiological (Davison et al., 1982; Kaufman et al. 1985)
- Postmortem (Green, 2010; Kerrison et al., 1994)

Prospects for OCT in MS

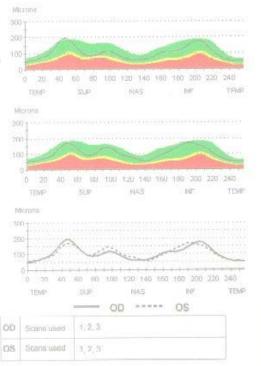
- biomarker of disease prognosis
- monitoring disease course
- Defining response to therapy

OCT can measure (colour code) :

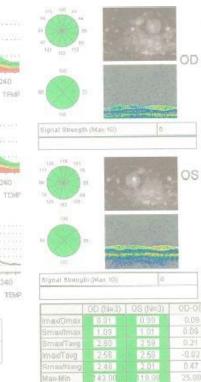
- Acute phase:


papiledema = RNFL

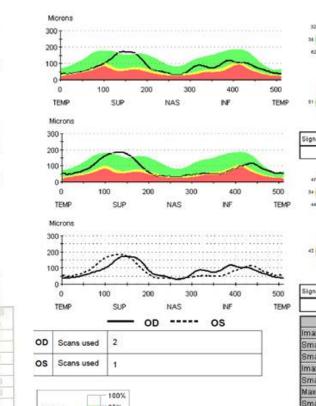
- Chronic phase: RNFL


There is a predominance temporal quadrant .

The thickness of RNFL by month 3 (stable> 6 mo.)


RNFL thickness by mo. 6
 predicts disability (<75 μm)

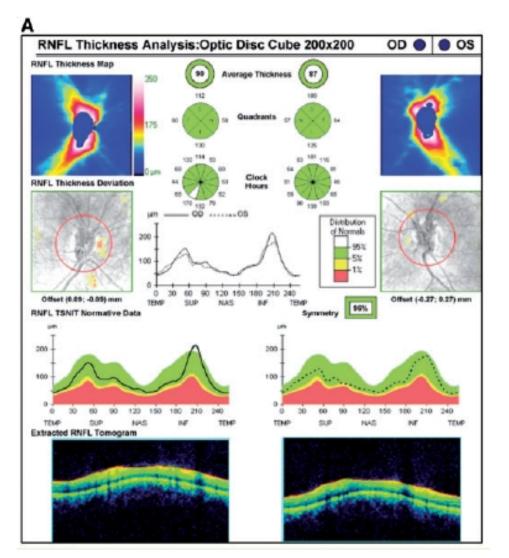
OCT normal

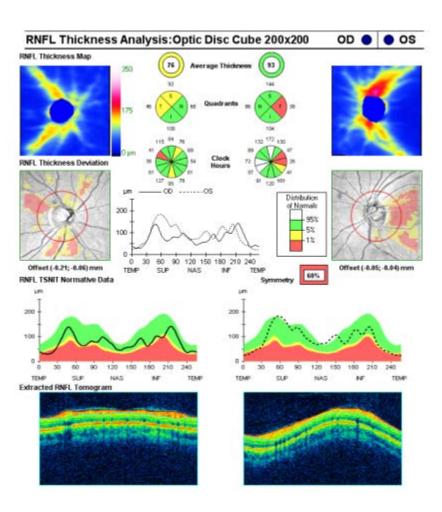


Smax

max

Savg

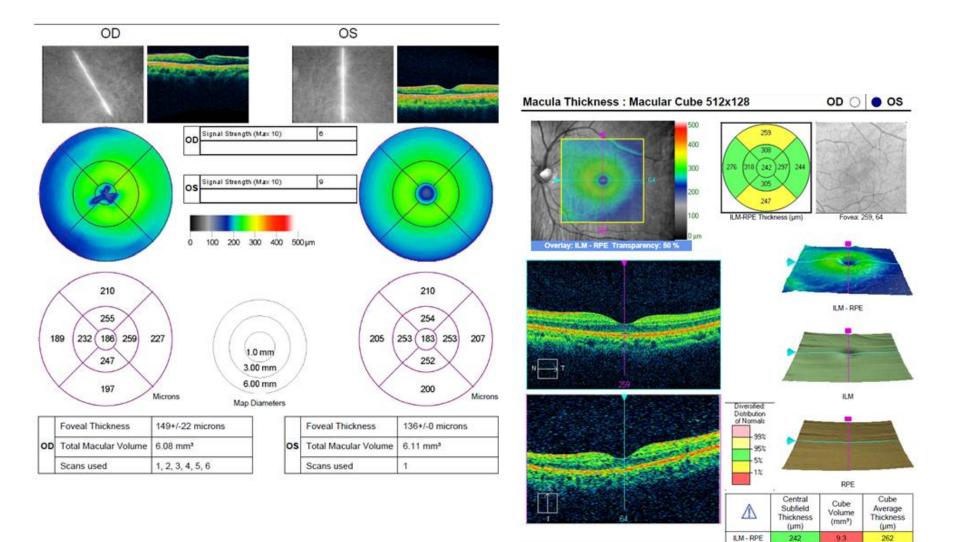


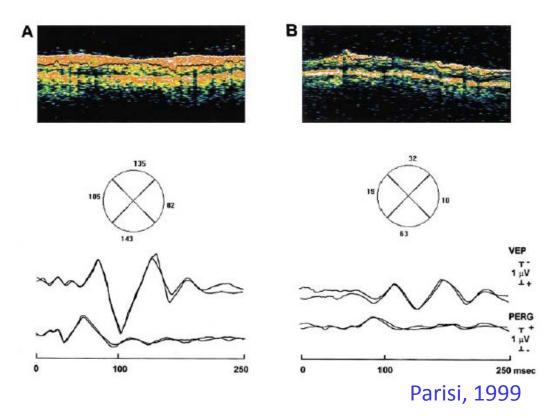

Signai Streng	Signai Strength (Max 10)				
	05 87 52 77 127		0		
Signal Streng	th (Max 10)	10			
Signal Streng			00-05		
Signal Streng	th (Max 10)	10 OS (N=1) 0.62	0D-08		
	OD (N=1)	08 (N=1)			
lmao/Smax	OD (N=1) 0.68	08 (N=1)	0.06		
lmao/Smax Smax/Imax	OD (N=1) 0.68 1.47	OS (N=1) 0.62 1.61	0.06		
lmax/Smax Smax/Imax Smax/Tavg	OD (N=1) 0.68 1.47 3.38	OS (N=1) 0.62 1.61 2.81	0.06 -0.14 0.57		
imaw/Smax Smax/Imax Smax/Tavg Imax/Tavg	OD (N=1) 0.68 1.47 3.38 2.30	08 (N=1) 0.62 1.61 2.81 1.75	0.06 -0.14 0.57 0.55		
lmaw/Smax Smax/Imax Smax/Tavg Imax/Tavg Smax/Navg	OD (N=1) 0.68 1.47 3.38 2.30 3.08	OS (N=1) 0.62 1.61 2.81 1.75 4.43	0.06 -0.14 0.57 0.55 -1.34 -9.00		
Imaw/Smax Smax/Imax Smax/Tavg Imaw/Tavg Smax/Navg Max-Min Smax	OD (N=1) 0.68 1.47 3.38 2.30 3.08 143.00	OS (N=1) 0.62 1.61 2.81 1.75 4.43 152.00	0.06 -0.14 0.57 0.55 -1.34 -9.00		
Imaw/Smax Smax/Imax Smax/Tavg Imaw/Tavg Smax/Navg Max-Min Smax	OD (N=1) 0.68 1.47 3.38 2.30 3.08 143.00 171.00	OS (N=1) 0.62 1.61 2.81 1.75 4.43 152.00 184.00	0.06 -0.14 0.57 0.55 -1.34 -9.00 -13.00		
Imaw/Smax Smax/Imax Smax/Tavg Imaw/Tavg Smax/Navg Max-Min Smax Imax	OD (N=1) 0.68 1.47 3.38 2.30 3.08 143.00 171.00 117.00	OS (N=1) 0.62 1.61 2.81 1.75 4.43 152.00 184.00 115.00	0.06 -0.14 0.57 0.55 -1.34 -9.00 -13.00 2.00		

OD

187

Pathological OCT



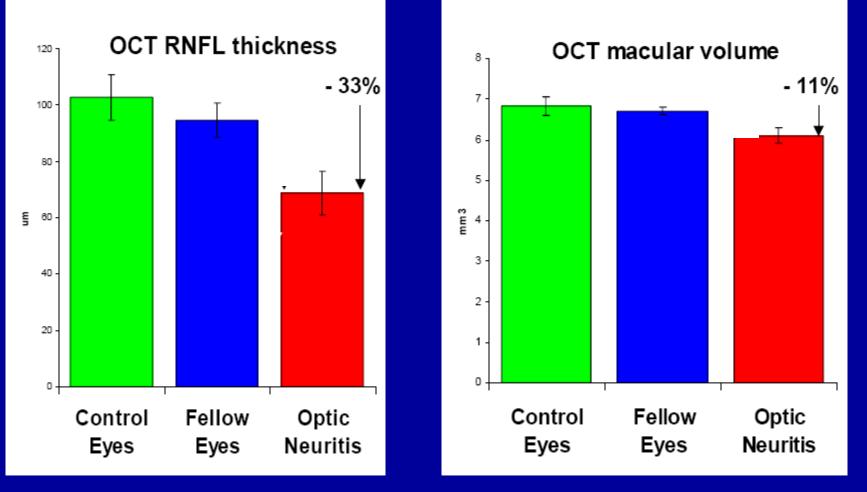


OCT normal

Pathological OCT

EXPLORATION OF MACULA

First OCT study in MS


Significant reduction of RNFL thickness among the ON-eyes, MS- eyes and healthy controls. There is a correlation between PERG changes and NFL thickness in MS patients previously affected by optic neuritis, but there is no correlation between VEP changes and RNFL thickness

Meta-analysis (32 studies, Petzold et al., Lancet 2010) RNFL average in healthy controls 105 μm

MS-ON vs HS -20,38 µm

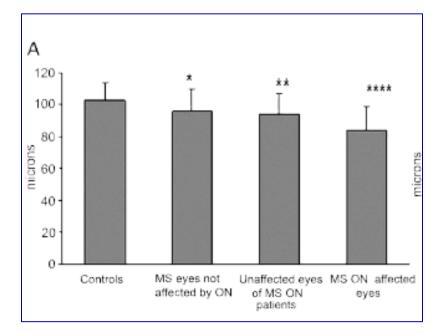
MS without ON vs HS -7,08 μm

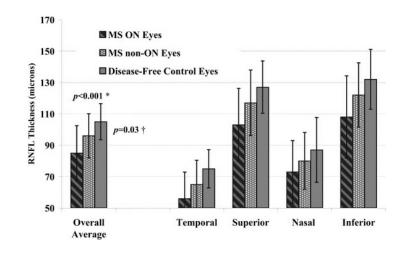
25 patients > 1 year post optic neuritis with incomplete recovery vs 15 controls ~30% mean loss of RNFL, ~10% decrease in macular volume (all differences compared to affected eyes: p < 0.001)

Trip et al Ann Neurol 2005

OCT IN OPTIC NEURITIS

AXONAL LOSS IN MS EVEN WITHOUT ACUTE ON

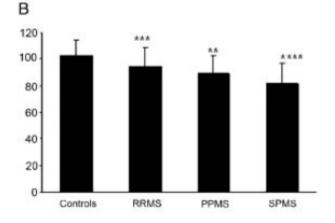

	G1	G2	G3	Total
Sin atrofia	8 (42,1%)	3 (25%)	12 (66,7%)	23 (46,9%)
Con atrofia	11 (57,9%)	9 (75%)	6 (33,3%)	26 (53,1%)
Ojo contralateral (χ², p = 0,007)		· · /		
Sin atrofia	17 (100%)	6 (54,5%)	10 (58,8%)	33 (73,3%)
Con atrofia	0` ´	5 (45,5%)	7 (41,2%)	12 (26,7%)

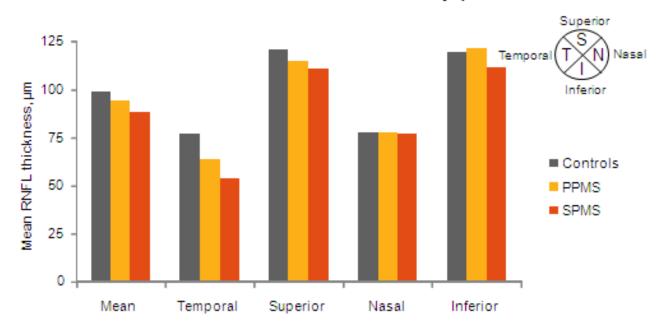

Tabla 3 Pacientes con atrofia de la capa de fibras nerviosas

Se considera atrofia cuando el grosor medio está por debajo del percentil 5 en comparación con la base de datos normalizada.

G1: NO, G2: EM+NO , G3: EM

Oreja-Guevara C et. al, 2010




Fisher, 2007

Pulicken, 2007

AXONAL LOSS IN ALL SUBTYPES OF MS

Pulicken, 2007

Mean RNFL thickness in PPMS and SPMS by quadrant

Henderson et al., Brain 2008

Clinically Isolated Syndromes Suggestive of Multiple Sclerosis: An Optical Coherence Tomography Study

Celia Oreja-Guevara¹*, Susana Noval², Juan Alvarez-Linera³, Laura Gabaldón⁴, Beatriz Manzano², Beatriz Chamorro¹, Exuperio Diez-Tejedor¹

Table 2. Crosstabulation between the two different criteria of spatial dissemination applied and OCT findings.

	Quadrants <	Quadrants <5%		Quadrants <1%		
DIS MRI criteria	None	≥1	None	≥1	Total	
Fulfilled	2	6	4	4	8	
Not fulfilled	9	7	13	3	16	
Total	11	13	17	7	24	
Alternative criteria	Quadrants <	(5%	Quadrants 🗸	Quadrants <1%		
(OCB+ at least two lesions in MRI)	None	≥1	None	≥1	Total	
Fulfilled	3	6	6	3	9	
Not fulfilled	5	7	8	4	12	
Total	8	13	14	7	21	

DIS: dissemination in space; OCB: oligoclonal bands. doi:10.1371/journal.pone.0033907.t002

> Table 3. Sensibility and specificity for OCT findings according to MIR Barkhof criteria and MIR and OCB criteria for DIS.

	¾ Barkho	of MIR criteria	MIR and	OCB criteria
	<5%	<1%	<5%	<1%
Sensitivity (%)	75	50%	66.67%	33.33%
Specificity (%)	56.25%	81.25%	58.33%	66.67%

doi:10.1371/journal.pone.0033907.t003

RNFL thickness is linked to disease activity in patients with Multiple Sclerosis

- Patients who experienced relapses had a significantly thinner average RNFL compared with those who remained relapse-free over a 2-year period
- Patients who had disease progression had a significantly thinner temporal RNFL compared with those who remained progressionfree* over 2 years

	Relap	se-free	Disability progression		
	Yes (42.8%) No (57.2%)		No (69.0%)	Yes (31.0%)	
Average RNFL					
Mean (SD) µm	87.5 (13.8)	76.2 (14.1)**	83.5 (13.3)	76.6 (17.6)	
Temporal RNFL					
Mean (SD) µm	59.0 (11.5)	54.3 (14.6)	61.0 (12.4)	46.0 (9.1)**	
**p<0.01	00.0(11.0)	01.0(11.0)	01.0(12.1)		

RNFL thickness is linked to progresion in MS

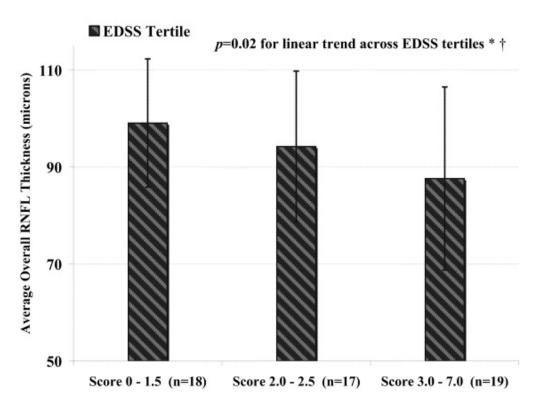
RNFL	١	/erbal men	nory	Visual memory		Executive and attention		Language fluency	
	SRT-S	SRT-R	SRT-D	SPART-S	SPART-D	SDMT	PASAT3	WLG-p	WLG-s
Average RNFL OCT	0.484*	0.247	0.220	0.428*	0.466*	0.463*	0.546**	0.195	0.214
Average RNFL HRT	0.032	0.226	0.001	0.009	0.056	0.174	0.139	-0.0323	0.045
Temporal RNFL OCT	0.441*	0.272	0.201	0.289	0.189	0.754***	0.268	0.176	0.141
Temporal superior RNFL HRT	0.113	0.205	0.061	0.174	0.157	0.175	0.250	-0.120	0.121

Table 6 Correlation between RNFL thickness and cognitive impairment

The degree of RNFL atrophy was correlated with cognitive disability

with cognitive disability,

mainly with the symbol digit modality test (r = 0.754, P < 0.001).

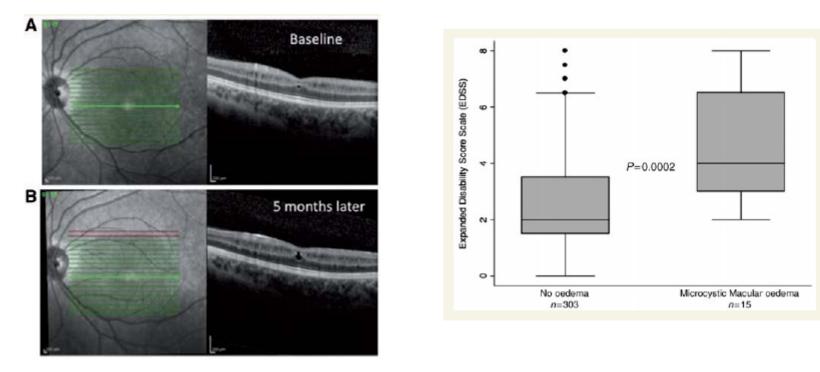

Moreover, temporal quadrant RNFL atrophy measured with OCT was associated

with physical disability.

Neurology, Toledo, 2008

	ED	SS	MSFC	
	r	Р	r	Р
Average RNFL OCT	-0.399	0.010	0.227	0.158
Average RNFL HRT	-0.266	0.093	0.147	0.373
Temporal RNFL OCT	-0.587	0.00004	4 0.440	0.004
Temporal RNFL HRT	-0.370	0.017	0.048	0.771
Temporal superior RNFL HRT	-0.144	0.234	0.158	0.336
Temporal Inferior RNFL HRT	-0.235	0.139	0.265	0.103
Cup-disc area ratio HRT	0.241	0.129	-0.255	0.117
Rim-disc area ratio HRT	-0.020	0.900	-0.025	0.879
Global rim volume HRT	-0.399	0.010	0.227	0.158

RNFL thickness is linked to progresion in MS



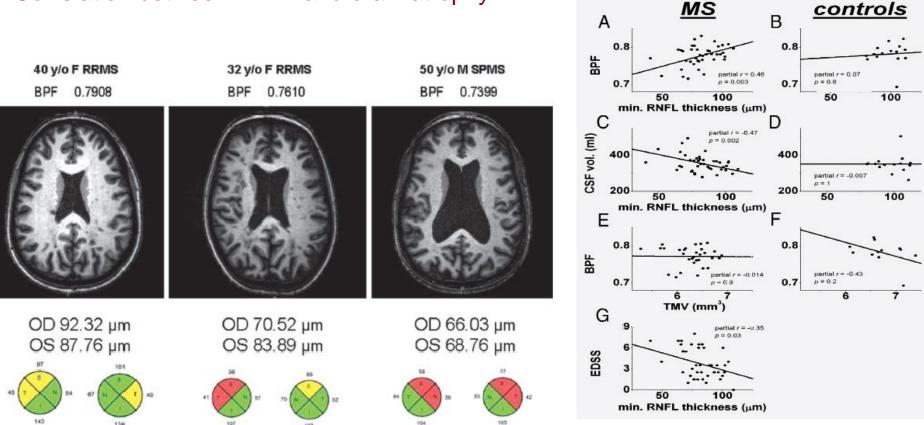
	ED	SS	MSFC		
	r	Р	r	Р	
Average RNFL OCT	-0.399	0.010	0.227	0.158	
Average RNFL HRT	-0.266	0.093	0.147	0.373	
Temporal RNFL OCT	-0.587	0.00004	0.440	0.004	
Temporal RNFL HRT	-0.370	0.017	0.048	0.771	
Temporal superior RNFL HRT	-0.144	0.234	0.158	0.336	
Temporal Inferior RNFL HRT	-0.235	0.139	0.265	0.103	
Cup-disc area ratio HRT	0.241	0.129	-0.255	0.117	
Rim-disc area ratio HRT	-0.020	0.900	-0.025	0.879	
Global rim volume HRT	-0.399	0.010	0.227	0.158	

Fisher, 2007

Microcystic macular oedema in multiple sclerosis is associated with disease severity

Jeffrey M. Gelfand,¹ Rachel Nolan,¹ Daniel M. Schwartz,² Jennifer Graves¹ and Ari J. Green^{1,3}

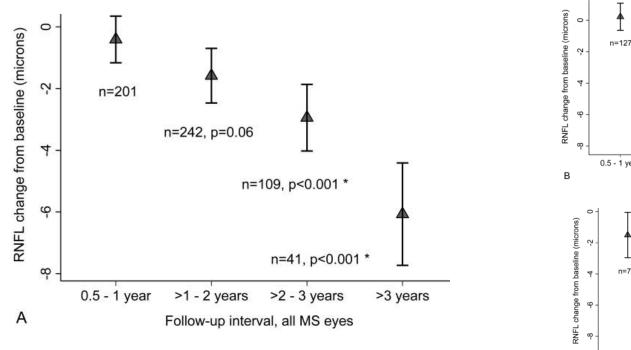
	Eyes without macular oedema (n = 606)	Eyes with microcystic macular oedema $(n = 20)^{a}$	P-value
Prior symptomatic optic neuritis in that eye, n (%)	161 (27)	10 (50)	0.02 ^b
Total RNFL thickness (µm), mean (SD)	87 (15)	66.7 (15.4)	< 0.001 ^c
Macular volume (mm ³), mean (SD)	3.01 (0.22)	2.9 (0.15)	0.12 ^c
Foveal thickness (µm), mean (SD)	271.2 (21.9)	276.4 (28.8)	0.50 ^c
Visual acuity (logMAR), median (IQR)	-0.1 (-0.1 to 0)	0.17 (0 to 0.4)	0.001 ^c 0.03 ^d

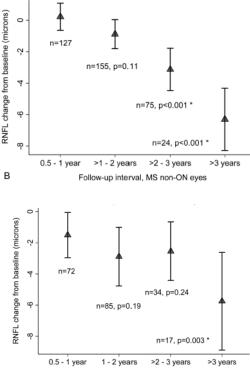

Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning Neurology® 2013;80:47-54

	All MS/CIS vs HCs	RRMS vs HCs	SPMS vs HCs	PPMS vs HCs	CIS vs HCs
RNFL difference, µm (p value)	-7.26 (<0.001)	-7.50 (<0.001)	-9.05 (0.01)	-2.16 (0.58)	-2.31 (0.57)
GCIP difference, μ m (p value)	-9.97 (<0.001)	-9.90 (<0.001)	-12.82 (<0.001)	-7.05 (0.006)	-6.93 (0.006)
Letter acuity difference, 100% contrast (p value)	-2.15 (0.12)	-1.77 (0.24)	-2.17 (0.25)	-4.10 (0.07)	-1.56 (0.42)
Letter acuity difference, 2.5% contrast (p value)	-5.32 (0.002)	-4.81 (0.007)	-2.31 (0.42)	-5.83 (0.08)	-9.92 (0.002)
Letter acuity difference, 1.25% contrast (p value)	-5.70 (<0.001)	-5.12 (0.004)	-4.76 (0.09)	-6.25 (0.04)	-5.48 (0.10)

John N. Ratchford, MD* Shiv Saidha, MRCPI* Elias S. Sotirchos, MD Jiwon A. Oh, MD, FRCPC Michaela A. Seigo, ScB Christopher Eckstein, MD Mary K. Durbin, PhD Jonathan D. Oakley, PhD Scott A. Meyer, PhD Amy Conger, COA Teresa C. Frohman, BS Scott D. Newsome, DO Laura J. Balcer, MD, MSCE Elliot M. Frohman, MD, PhD Peter A. Calabresi, MD

Patients with more relapses, more new gd lesions and new T2 lesions had faster rates of annualized GCIP thinning. Macular GCIP thinning is more closely associated with radiologic and clinical measures of MS progression than is RNFL thinning.


Correlation between RNFL and brain atrophy



The thickness of RNFL is associated with the BPF (Gordon et al., 2007)

Longitudinal Study of Vision and Retinal Nerve Fiber Layer Thickness in MS

Lauren S. Talman, BA¹, Esther R. Bisker, MD¹, David J. Sackel, BS¹, David A. Long Jr., BS¹, Kristin M. Galetta, MS¹, John N. Ratchford, MD⁵, Deacon J. Lile, BA¹, Sheena K. Farrell, BS⁵, Michael J. Loguidice, BA¹, Gina Remington, BSN, RN⁶, Amy Conger, COA⁶, Teresa C. Frohman, BS⁶, Dina A. Jacobs, MD¹_{And}, Clyde F. Markowitz, MD¹_AGary R. Cutter, PhD⁷, Gui-Shuang Ying, PhD^{3,4}, Yang Dai, PhD^{3,4}, Maureen G. Maguire, PhD^{3,4}, Steven L. Galetta, MD^{1,3}, Elliot M. Frohman, MD, PhD⁶, Peter A. Calabresi, MD⁵, and Laura J. Balcer, MD, MSCE^{1,2,3}

Follow-up interval, MS ON eves

С

The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment

Prejaas Tewarie¹, Lisanne Balk¹, Fiona Costello², Ari Green³, Roland Martin^{4[±]}, Sven Schippling^{4[±]}, Axel Petzold⁵*

1 MS Centre Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands, 2 University of Calgary, Departments of Clinical Neurosciences and Surgery, Calgary, Alberta, Canada, 3 Multiple Sclerosis Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America, 4 Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (Inims), University Medical Center Hamburg Eppendorf, Hamburg, Germany, 5 UCL Institute of Neurology, London, United Kingdom

Therapeutic Advances in Neurological Disorders

Optical coherence tomography as a potential readout in clinical trials

Benjamin M. Greenberg and Elliot Frohman

Review

Ther Adv Neurol Disord

(2010) 3(3) 153-160

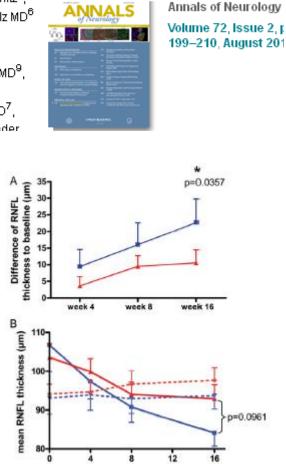
DOI: 10.1177/ 1756285610368890

© The Author(s), 2010. Reprints and permissions: http://www.sagepub.co.uk/ journalsPermissions.nav

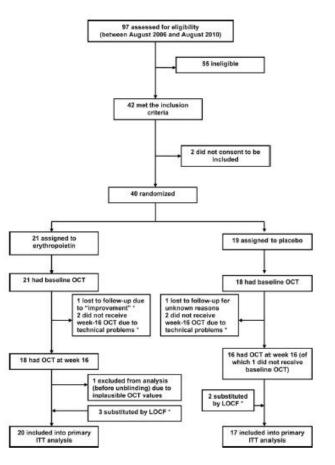
Table 4 Sample size estimates for outcome measures (retinal nerve fibre layer thickness) at 12 months (panel a), 6 months (panel b) and 3 months (panel c) for a parallel-groups, placebo-controlled trial

	80% p	ower		90% p	ower		
Effect size	Method	1		Method			
	A	B	с	A	в	с	
Panel a							
20	292	231	225	391	309	301	
30	130	103	100	174	137	134	
40	73	58	57	98	78	76	
50	47	37	36	63	50	49	
60	33	26	25	44	35	34	
70	24	19	19	32	26	25	
80	19	15	15	25	20	15	
Panel b							
20	358	222	218	479	297	292	
30	159	99	97	213	132	130	
40	90	56	55	120	75	73	
50	58	36	35	77	48	47	
60	40	25	25	54	33	33	
70	30	19	18	40	25	24	
80	23	14	14	30	19	15	
Panel c							
20	1024	608	596	1370	814	797	
30	455	271	265	609	362	355	
40	256	152	149	343	204	200	
50	164	98	96	220	131	128	
60	114	68	67	153	91	89	
70	84	50	49	112	67	66	
80	64	38	38	86	51	50	

Current trials using OCT


- MSC
- Fingolimod (safety)
- Ocrelizumab RRMS
- Anti-Lingo (AON)
- NT-KO-003
- AON (fingolimod)

Clinical trial monitoring with MS


A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis

Issue

Kurt-Wolfram Sühs MD^{1,2}, Katharina Hein MD³, Muriel B. Sättler MD³, Anke Görlitz⁴, Christoph Ciupka MD⁵, Kerstin Scholz MD⁶ , Barbara Käsmann-Kellner MD⁷, Panagiotis Papanagiotou MD⁸, Nina Schäffler MD⁹, Cordula Restemeyer MD⁹, Diana Bittersohl MD¹⁰, Andrea Hassenstein MD¹⁰, Berthold Seitz MD⁷, Wolfgang Reith MD⁸, Klaus Fassbender MD¹, Reinhard Hilgers PhD¹¹, Chri: Heesen MD⁹, Mathias Bähr MD³, Ri Diem MD^{1,12,*}

week

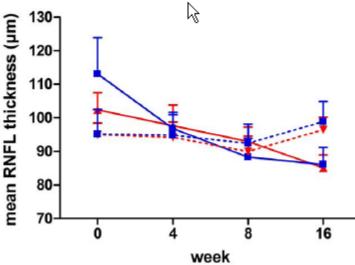
Decrease in retrobulbar diameter of the optic nerve was smaller in the erythropoietin group

Retinal Nerve Fibre Layer Thinning in Patients with Clinically Isolated Optic Neuritis and Early Treatment with Interferon-Beta

Kurt-Wolfram Sühs^{1,2}, Katharina Hein³, Jens R. Pehlke^{1,4}, Barbara Käsmann-Kellner⁵, Ricarda Diem^{1,6}*

1 Department of Neurology, Saarland University, Homburg, Germany, 2 Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany, 3 Department of Neurology, Georg-August University, Göttingen, Germany, 4 Department of Addiction Disorders, LWL Clinic Münster, Münster, Germany, 5 Department of Ophthalmology, Saarland University, Homburg, Germany, 6 Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany

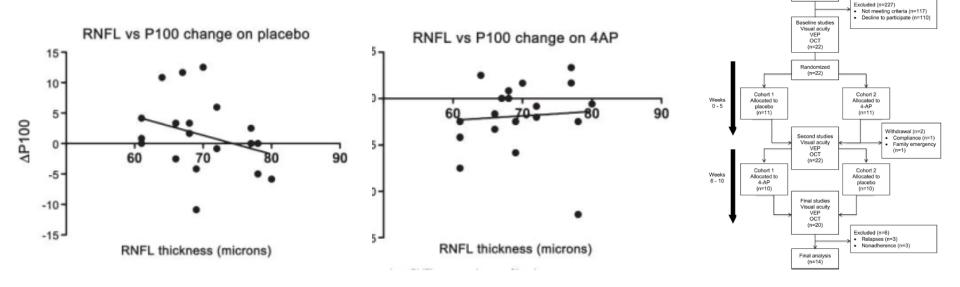
Abstract


Background: Optic neuritis is associated with neurodegeneration leading to chronic impairment of visual functions.

Objective: This study investigated whether early treatment with interferon beta (IFN- β) slows retinal nerve fibre layer (RNFL) thinning in clinically isolated optic neuritis.

Methods: Twenty patients with optic neuritis and visual acuity decreased to ≤ 0.5 (decimal system) were included into this prospective, open-label, parallel group 4-month observation. After methylprednisolone pulse therapy, 10 IFN- β from week 2 onwards. This group was compared to 10 patients free of any disease modifying treat parameter of interest was change in RNFL thickness assessed at baseline and at weeks 4, 8, and 16. Change visual field, and visual evoked potentials (VEPs) served as additional outcome parameters.

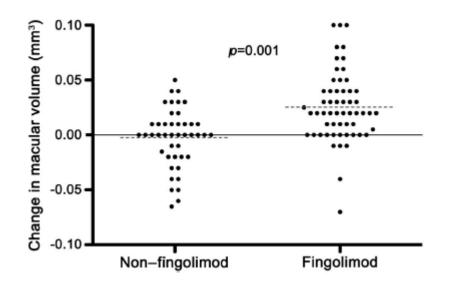
Results: RNFL thinning did not differ between the groups with a mean reduction of $9.80\pm2.80 \,\mu$ m in IFN-(\pm SD) vs. 12.44 \pm 5.79 μ m in patients who did not receive DMT (baseline non-affected eye minus affected p=0.67, t-test, 95% confidence interval: -15.77 to 10.48). Parameters of visual function did not show between the groups either.


Conclusions: In isolated optic neuritis, early IFN- β treatment did not influence RNFL thinning nor had recovery of visual functions.

Effect of 4-aminopyridine on vision in multiple sclerosis patients with optic neuropathy

Lindsay Horton, MS Amy Conger, COA Darrel Conger, CRA Gina Remington, RN Teresa Frohman, PA-C Elliot Frohman, MD, PhD Benjamin Greenberg, MD, MHS

> Assessed for eligibility (N=249)



The eyes with an RNFL measure between 60 to 80 μ m had the highest response rate.

Fingolimod treatment in multiple sclerosis leads to increased macular volume

Figure Fingolimod treatment in multiple sclerosis is associated with an increase in macular volume Rachel Nolan, BA* Jeffrey M. Gelfand, MD* Ari J. Green, MD, MCR

Neurology,2013

Higher macular volume in patients with MS receiving fingolimod

Positive outcome or side effect?

Marc Dinkin, MD Friedemann Paul, MD

Conclusions

➢OCT is a promising imaging technique for monitoring axonal damage in MS.

➢OCT can identify subtle changes in RNFL and macula over time.

➢OCT measurements seem to correlate with clinical and MRI parameters.

➢ It is a candidate biomarker for becoming a surrogate end-point in clinical trials of MS.

THANK YOU

