

NHS Foundation Trust

Paediatric Formulations "The Clinical Perspective"

Tony Nunn & Sara Arenas-Lopez

Paediatric Pharmacists Alder Hey Children's Hospital, Liverpool, U.K. Evelina Children's Hospital, Guy's & St Thomas NHS Foundation Trust

Introduction

What is an 'age-appropriate' formulation?

- Lack of evidence base
- Research underway
- Misinterpretation of 'reflection paper'

Excipients

Discussed by others Exposure of neonates of concern

• Developmental toxicokinetics?

Resolution of formulation problems

- Insufficient space for excipients
 - e.g. oro-dispersibles
- Additional excipients
 - e.g. coated granules

Some common problems

Hyperosmolal solutions

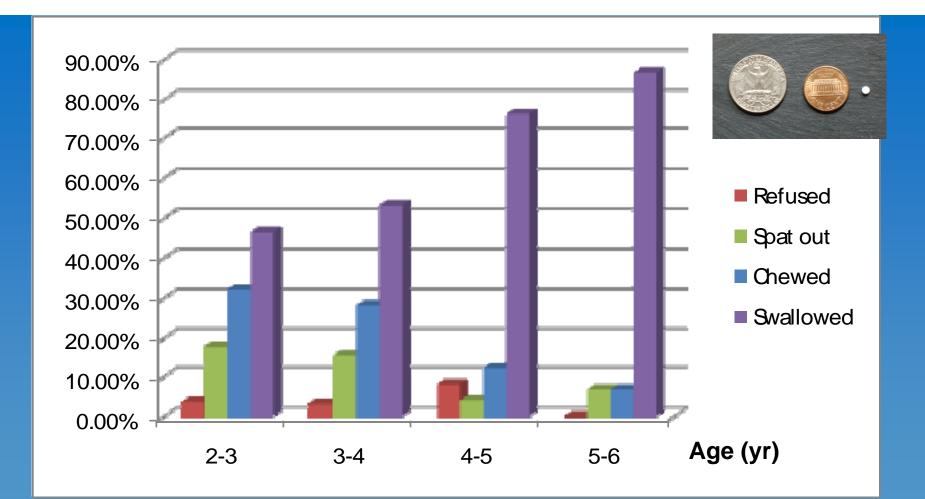
- Especially neonates
 - Enteral
 - Associated with NEC
 - N&V
 - -IV
 - Phlebitis and pain
 - Plasma hyperosmolality
 - Requirement for dilution Excess fluid/electrolytes

Some common problems

Measurement of dose volumes

- Accuracy
 - e.g. 0.02 ml with 0.005 ml error = 25%
 - whereas 0.5 ml with 0.005 ml error is 1%
- Potential for error
 - Misinterpretation
 - Dilution
 - 10x errors

'Rinsing' of syringes (especially for PK studies)
 Ensure concentration is appropriate for dose
 Ensure amount presented limits risk of overdose if miscalculation occurs


- Additional risk factor
 - requiring pharmacy manipulation (if available)

At what age can children take solid oral dosage forms (tablets/capsules)?

Messages

- Not much evidence available
- Wide variety of ages quoted
- Tablets and capsules vary
 - size and shape
 - Method of administration e.g. orodispesible
- Training can help
 - Use of jelly beans etc.
 - Taste of liquid alternative may be an influence
- Demonstrate that dosage form is appropriate for age
 - Ask the children

Mini-tablets

Thomson et al. 2009 Pediatrics ;123(2): e235-e238

Tablet and capsule sizes

Tablets	\bigcirc	•	\bigcirc	(
	5mm	7mm (coated)	8mm	10mm
Tablets	0	0	0	0
	10mm (coated)	13mm	14mm (coated)	15mm (chewable)
Caplets	•	0	0	
	8 x 5 x 2mm	11 x 5 x 5mm	17 x 6 x 4mm	20 x 9 x 5mm
Capsules	15mm (size 3)	18mm (size 1)	22mm (size 00)	24mm (size 000)
Soft gel capsules	1	0		
	12mm	12mm		

Children's preferences

Liverpool YPG	GOSH School Children				
11-16yrs (n=8)	11-16yrs (n=9)				
Variable solid dosage form preference	Round tabs<10mm diameter preferred				
Soft gel caps not preferred to larger tablets except by one (youngest 8 & 9 yr old's 1 st choice)	Soft gel caps not preferred to larger tablets				
More optimistic about ability to swallow solids	Much less likely to be able to swallow solids				
Flavour: strawberry>orange>banana	Flavour: orange>cherry=apple				
Dislikes about taking medicines: palatability rated highest (smell, flavour taste)					
Dislikes about taking medicines: side effects such as nausea and drowsiness					

Does my medicine taste nice?

Taste, smell and texture of liquid medicines

- Taste testing
 - Adult/paediatric taste panels
 - In use testing
 - Electronic methods
- Volume
 - Concentrated drops and accuracy

Taste masking with food or liquids

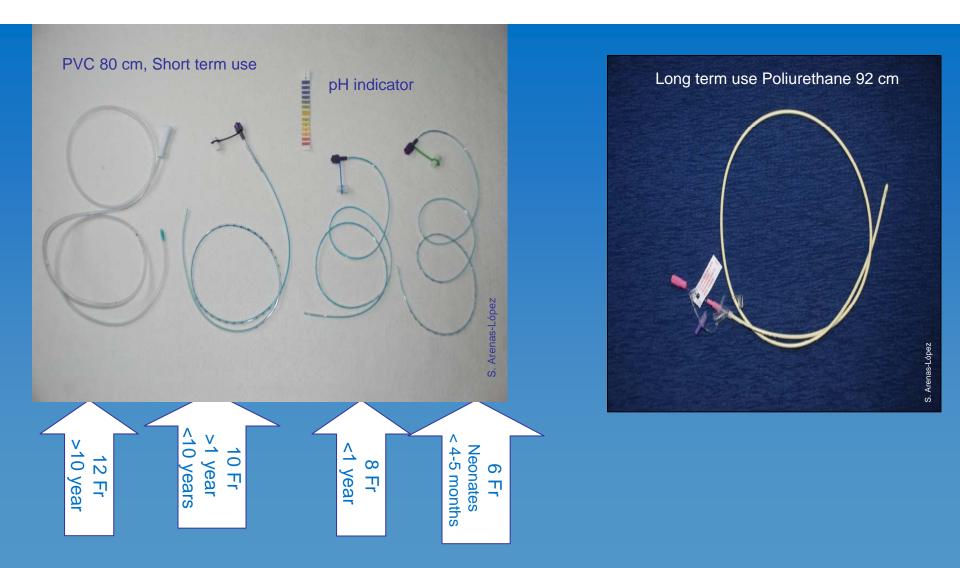
- Paradigm
 - Whole dose will not be consumed
 - Food/drink aversion
 - Common practice and provides 'masking' at point of administration
- Granules/particles
 - Intended to be added to food

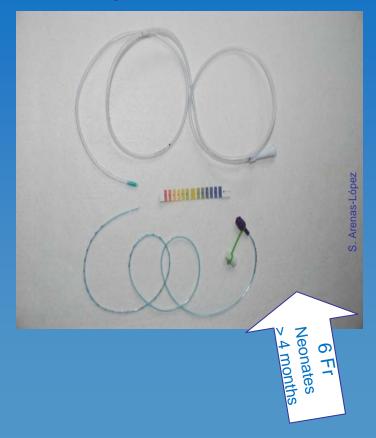
Liquid oral medicines

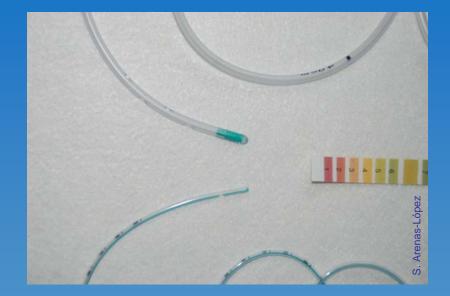
Messages

- Not much evidence available
 - Cultural differences?
- Children are concerned about palatability
- Large volumes of unpalatable liquids will be rejected
- Small volumes preferred (if dosed accurately)
- Food and drink frequently used to mask poor taste

Manipulating dosage forms


Convenience (crush tablets/open capsules)


- Enteral tubes
 - Naso-enteric
 - Gastrostomy/jejunostomy
 - Interaction with feeds/materials


Accuracy

- Splitting tablets
- Many other manipulation types

Naso-gastric tubes

Extemporaneous preparation

Variations in captopril formulations used to treat children with heart failure: a survey in the United kingdom

Hussain Mulla, Magdi Tofeig, Frances Bu'Lock, Nilesh Samani, Hitesh C Pandya

Arch Dis Child 2007;92:409-411

 Table 1
 Composition and stability of liquid captopril formulations used to treat children with heart disease in the UK

		Expiry	Stability	
	Strengths	(days)	data*	Excipients
"Specials" manufacturer				
Cardinal Health Martindale Products	Various	90		Fractionated oconut oil, Cab-o-sil
The Specials Laboratory	Various	28	No	Xanthan gum 1%, ascorbic acid
Nova Laboratories (flavoured)	Various	28	No	Flavoured suspension Diluent A in a 1:1 ratio with water, ascorbic acid
Nova Laboratories (unflavoured)	Various	8	No	Suspension diluent A in a 1:1 ratio with water
NHS manufacturing unit (St Mary's Pharmaceutical Unit)	1, 5 and 12.5 mg/ml	35	No	Xanthan gum 0.4%, methyl hydroxyl- benzoate, propyl-hydroxy benzoate
Imported (Bristol–Myers Squibb, Australia)	5 mg/ml	28	Yes	Citric acid, sodium citrate, disodium edetate, sodium benzoate
Extemporaneous formulations				
Southampton General Hospital	1 mg/ml	14	No	Ascorbic acid, water
Bradford Royal Infirmary, Royal Hospitals, Belfast, and St George's, London	Various	14	No	Suspension diluent A
St George's, London	Various	14	No	OraPlus/OraSweet (1:1 ratio)
Queen's Medical Centre, Nottingham, and Gloucester Royal Infirmary	Various	14	No	Suspension diluent A in a 1:1 ratio with water

Suspension diluent A contains xanthan gum 1%, methyl hydroxybenzoate and propylhydroxy benzoate. St George's Hospital, London, provided two extemporaneous methodologies.

*Evidence of comprehensive in-house stability data on the final finished product.

• industry-verified?

Manipulation/extemporaneous dispensing

Dosage forms will be manipulated

- By carers
- By pharmacists
- Not much evidence
 - Mainly on splitting tablets
 - Issues
 - Accuracy
 - Bioavailability
 - Health and safety

Industry verification?

Other routes of particular interest

Buccal

 e.g. midazolam for prolonged fits; preferred to rectal Nasal

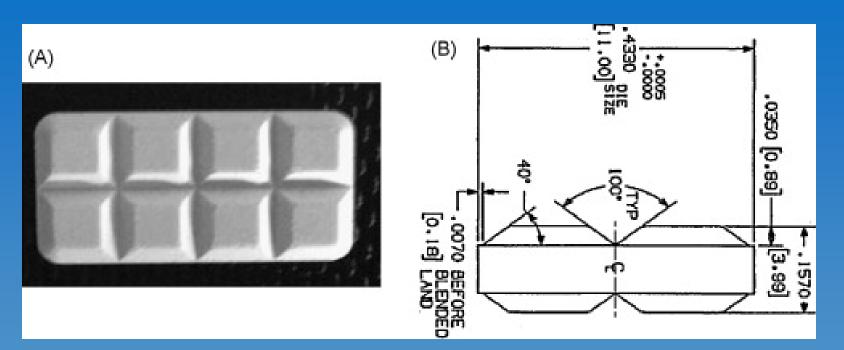
- e.g. diamorphine and other opioids for pain
 - delivery devices and accuracy of dose delivery
 - preferred to oral morphine

Transdermal

- Continuous delivery without IV infusion
- Skin permeability and age
 - Bioavailability
- Rectal
 - Acceptability
 - cultural differences
 - convenience (e.g. schools; emergencies)
 - Ability to vary dose with age/weight

Desirable features of paediatric formulations

Affordable Commercially viable Transportable and low bulk/weight Minimal administration frequency


Simple regimen

One dosage form fits all or full range/choice Minimal impact on life style Minimum, non-toxic excipients Convenient, easy, reliable administration

- Palatable
- Minimal manipulation
- Easily produced, elegant, stable
 - Heat stable

Achievable?

Development of fixed dose combination tablets containing zidovudine and lamivudine for paediatric applications

- dispersible
- accurate

Kayitare E, Vervaet C, Ntawukulilyayo JD, Seminega B, Bortel V, Remon JP. Int J Pharm 2009 Mar 31; 370(1-2): 41-6

Parenteral Route: General Considerations

- •Required if drugs not effectively absorbed by the enteral route or if quick/high/or constant blood and tissue Cp required
- Injections not generally liked by children
- Attention to needle size and method of injection
- •Transcutaneous needle free administration using air pressure to fire dose sprayed through skin (i.e growth Hormones)
- •If only adult sizes are provided the potential for medication errors increases considerably (i.e furosemide injection 1000 times the neonatal dose, LMWH)
- •Freeze-dried powders require reconstitution & a proportion of the volume measured to provide the dose (Displacement Volume to be considered)
- •Other parenteral routes include intrathecal, epidural, SC infusion, intraosseous injection or techniques such as PCA, NCA

IV Route

- In some cases IV administration the only appropriate route Used for: Medicinal products, blood derivatives, nutrition and fluid therapy
- •Accessing small veins in neonates & children may be difficult as fragile vasculature system & peripheral venous access may need to be reassessed often
- •Formulation of the injection & instructions for dilution & administration important to prevent damage to the veins. Important to research both peripheral & central routes & provide information in SmPC

Risk of IV therapy

Infection Phlebitis Infiltration Fluid Overload Electrolyte Imbalance Embolism Extravasation

Extravasation Injuries

Lines

Peripheral (Single lumen, Y Site connections)
pH, Osmolarity, concentration and infusion rate critical
Central (Single, double or triple lumen + Y-Site):
PICC
Tunnelled lines (i.e Hickman Lines)
Implantable Ports

Dilution of injections less critical due to rapid dilution & permits higher concentrations in fluid restricted children. Rate of infusion slowly may still apply to avoid cardio-respiratory collapse

IV Infusion rack & Y-Site connections

IV Fluid Therapy & Electrolytes

- Given as maintenance and/or replacement therapy and/or line patency
- Risk: Dilutional hyponatraemia with hypotonic solutions
- •This may be co-administered with medicines.
- Check for: for total fluid & electrolyte balance & Compatibility
- •Sometimes used to further dilute IV medicinal products (i.e Sodium Chloride, Glucose, Bicarbonate or lactate contaning solutions)
- **Risk: Clinical effect**

IV Route: Critical Care Neonates & children

•Neonates: Small number of lines to administer all the medicines + nutrition + blood products and Fluid maintenance (i.e Y site) \rightarrow RISK PHYSICAL & CHEMICAL INCOMPATIBILITIES!!

Devices for IV administration to be specified. Adsorption of the drug to the giving sets, filters → UNDERDOSING in neonates
The need for additional dilution or flushing may be important for effective administration and avoiding local & systemic unwanted effects BUT:

•Take into account fluid & electrolyte balance
•10 ml of sodium chloride 0.9% flush provides 1.53mMol of sodium. This may be the total daily sodium requirement of a preterm baby 3mMol/kg and a 0.5kg → RISK HYPERNATRAEMIA

IV Route: Critical Care Neonates & children

•Manipulations:

- Risk of infections (these children can be immunosuppressed)
- Calculation errors
- •Precipitation of the solution (i.e phenytoin in neonates)
- Use of standard concentrations preferred than amount/kg
- •Safe concentration and administration in a critically ill children required In PIP
- •Total parenteral nutrition, information on potential interactions (Chemical and clinical) to be provided
 - •Avoid concomitant administration of TPN and study drug via same line

IV Fluid Therapy Case: E.M 10 kg

Total Daily Fluid Allowance: 2ml/kg/hr= 48ml/kg/day IV Continuous Infusions in 0.9% Sodium Chloride running at: Morphine 1ml/hr (20 µ/kg/hr) Clonidine 1ml/hr (1 µ/kg/hr) Dopamine 2ml/hr (20 µ /kg/hr) Adrenaline 2ml/hr (0.2 µ /kg/hr) •Noradrenaline 2ml/hr (0.2 µ /kg/hr) Milrinone 1ml/hr (0.5 µ /kg/min) •CVP + Arterial Line: 2ml/hr **Total fluid from IV Infusions:** 11ml/hr= 26.4ml/kg/day= 4mMol/kg/day of sodium

Safety of IV injectables

 Incidence of errors in prescribing, preparing and administering injectable medicines > than for other forms of medicine.

In one study, at least

- -one error occurred in 49% of IV medicine doses prepared & administered on hospital wards
- -1 % were judged to be potentially severe errors
- -and 29% potentially moderate error

National Patient Safety Agency (NPSA)

Risk factors Description

- **1. Therapeutic risk**
- **2.** Use of a concentrate \rightarrow PIP
- 3. Complex calculation \rightarrow PIP
- 4. Complex method \rightarrow PIP
- 5. Reconstitution of powder in a vial \rightarrow PIP
- 6. Use of a part vial or ampoule, or use of more than one vial or ampoule \rightarrow PIP
- 7. Use of a pump or syringe driver (accuracy) \rightarrow PIP
- 8. Use of non-standard giving set/device required \rightarrow PIP

Total number of product risk factors

- >6 factors = high-risk product (Red).
- **3-5** = moderate-risk product (Amber).
- **1-2=** lower-risk product (Green).

Clinical "wish list" when assessing PIP's

- •Compatibility issues \rightarrow PIP
- •Contribution to daily fluid and electrolyte allowance \rightarrow PIP
- •Information on devices for IV administration and use implications $\rightarrow \mathsf{PIP}$
- •Safe Concentration for peripheral and central access & infusion rate \rightarrow PIP
- •Complex method (calculations, avoid decimal points, multiple manipulations, part vials (volume< 0.5ml difficult to measure as it is dead space of syringe & needle) or several vials per dose \rightarrow Exploring ready-to-use preparations/ standard concentrations & dose banding \rightarrow PIP
- •Technical information to take into account practice \rightarrow PIP

Acknowledgements

Dr Catherine Tuleu,The School of Pharmacy, London, U.K.PICU Nurses and family of patient

