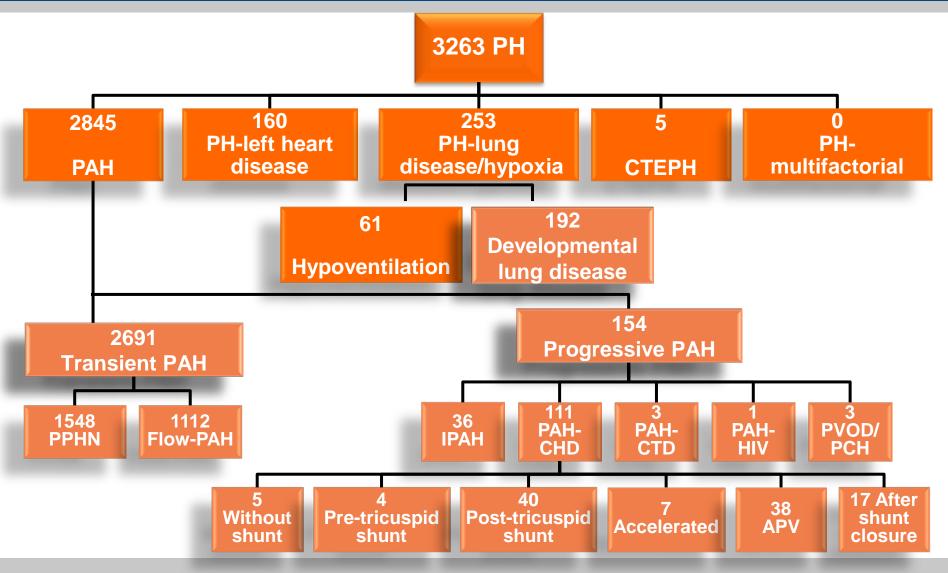
Paediatric Pulmonary Arterial Hypertension

Current Treatment, Needs and Challenges

London, June 12 2017


Rolf M.F. Berger

National Referral Center for Pulmonary Hypertension in Childhood

University Medical Center Groningen

The Netherlands

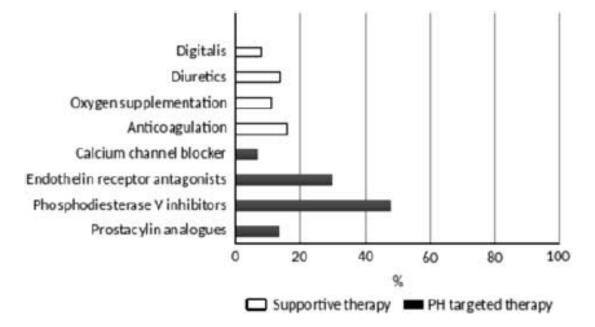
Classification of Paediatric PH in Dutch National cohort: 1991-2005

Van Loon R, et al. Circulation. 2011

Epidemiology Pediatric PAH data from large registries

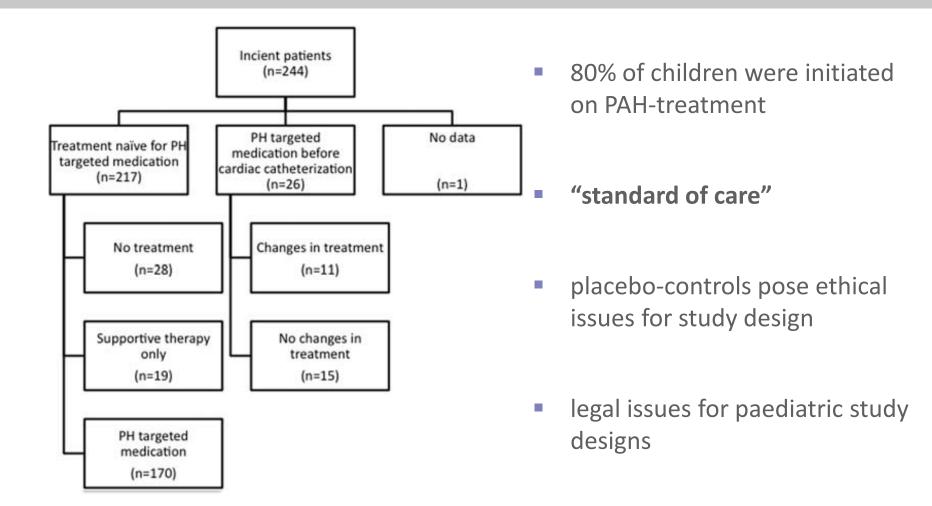
		Reveal-children ²	Reveal-Adults ³
Patients, <i>n</i>	362	216	2525
Age at Dx (yrs), median	7.5	7	53
Female, %	59	64	80
Group 1: PAH	317 (88)	216 (100)	2525 (100)
IPAH/HPAH	212 (53)	122 (56)	1166 (46)
CHD	160 (40)	23 (36)	215 (10)
CTD	9 (3)	10 (5)	639 (25)
Portopulmonary	2 (1)	3 (1)	136 (5)
Other	14 (4)	4 (2)	255 (10)
Group 3: Lung disease	42 (12)	NE	NE
Other	3 (1)	NE	NE

Values given are *n* (%) unless otherwise indicated


- 1. Berger et al. Lancet 2012.
- 2. Barst et al. Circulation 2012.
- 3. Badesch et al. Chest 2010.

Current Treatment Practice Global TOPP-1 registry

TODD
Tracking Outcomes and Practice in Pediatric Pulmonary Hypertension


244 incident patients

- Age at Dx 6yrs (3 months – 17 yrs)
- Female 58%
- Time Dx –Enr. < 3mo
- WHO-FC
 - I 30 (12%)
 - II 104 (42%)
 - III 89 (36%)
 - IV 21 (10%)

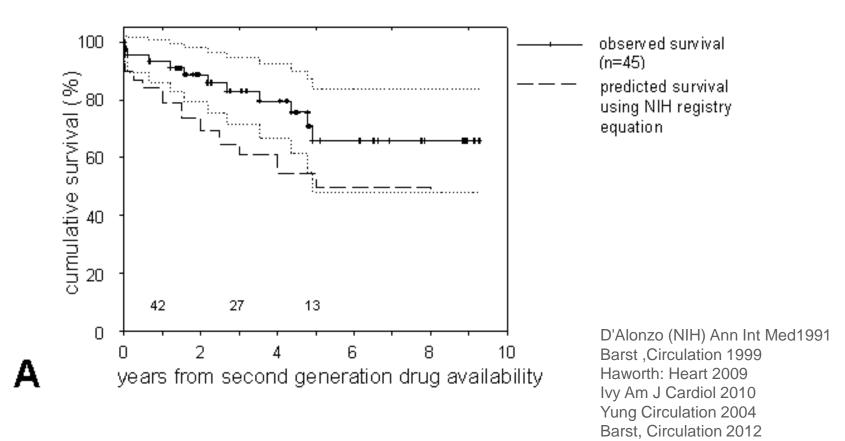
Humpl et al, Cardiol Young 2016

Current Treatment Practice: treatment initiation Global TOPP-1 registry

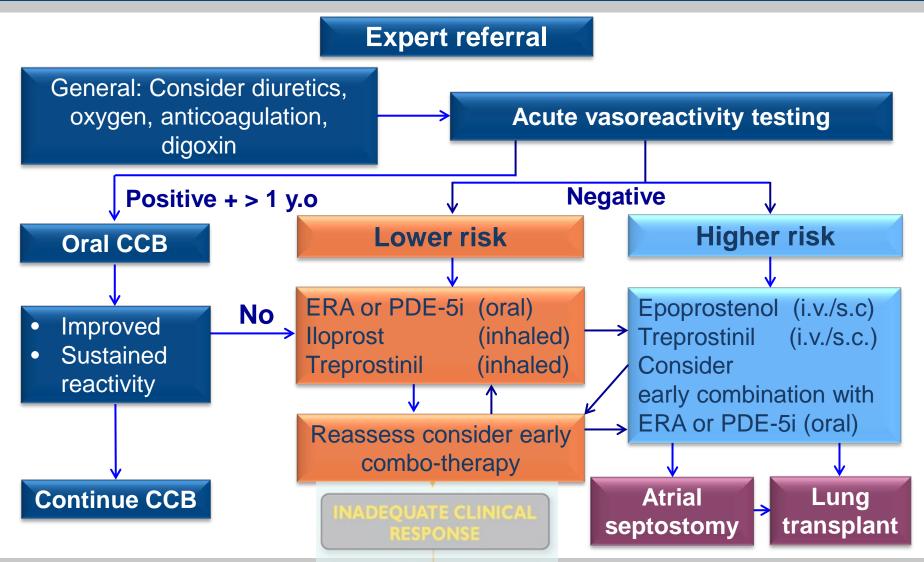
Current treatment practice stratified by by age groups

Table 7. Targeted and supportive therapy by age.

	> 3 months to <2 years	2 to <6 years	6 to <12 years	12 to <18 years	P het*	P trend**
n	50	64	38	65		
PH-targeted therapy	31 (62.0%)	48 (75.0%)	28 (73.7%)	48 (73.8%)	0.43	0.18
Prostacyclin analogue	10 (20.0%)	9 (14.1%)	3 (7.9%)	8 (12.3%)	0.45	0.32
Endothelin receptor antagonist	8 (16.0%)	25 (39.1%)	14 (36.8%)	18 (27.7%)	0.04	0.30
PDE V inhibitor	23 (46.0%)	30 (46.9%)	18 (47.4%)	33 (50.8%)	0.96	0.60
CCB (high dose for PH)	1 (2.0%)	6 (9.4%)	1 (2.6%)	7 (10.8%)	0.18	0.17
Supportive therapy						
Anticoagulation	5 (10.0%)	6 (9.4%)	9 (23.7%)	14 (21.5%)	0.08	0.03
Oxygen	3 (6.0%)	5 (7.8%)	7 (18.4%)	8 (12.3%)	0.25	0.15
Diuretics	7 (14.0%)	12 (18.8%)	3 (7.9%)	8 (12.3%)	0.49	0.46
Digitalis	4 (8.0%)	5 (7.8%)	4 (10.5%)	5 (7.7%)	0.96	0.96

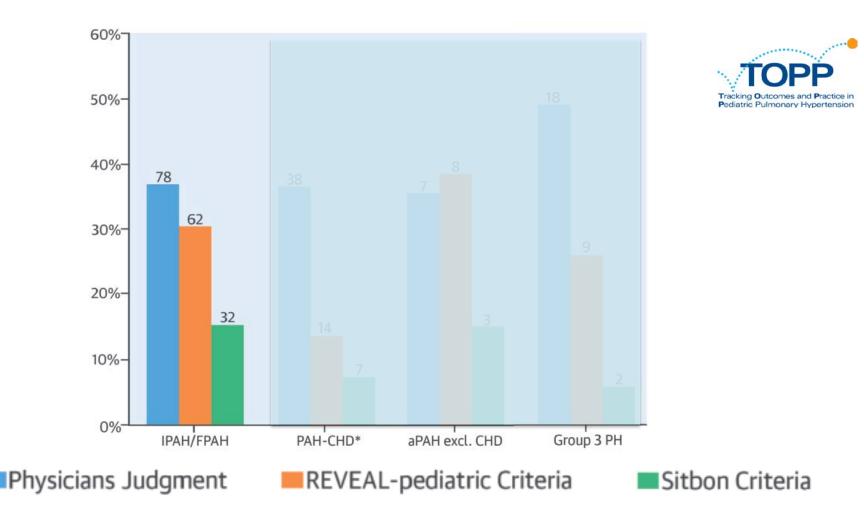

CCB = calcium channel blockers; PDE = phosphodiesterase; PH = pulmonary hypertension

*P-value from Fisher's exact test for heterogeneity

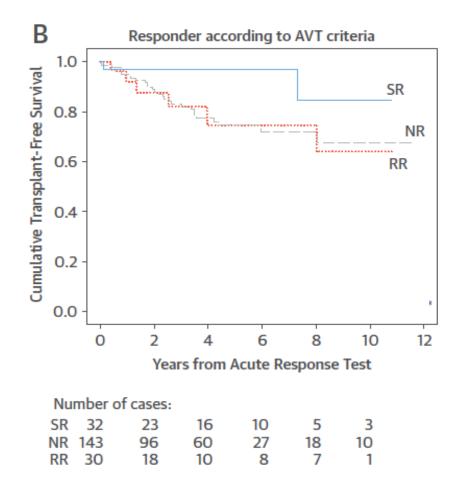

**P-value from χ^2 trend test

Survival Dutch National Registry for Pediatric PAH

In the era of PAH-targeted drugs vs. predicted (NIH)

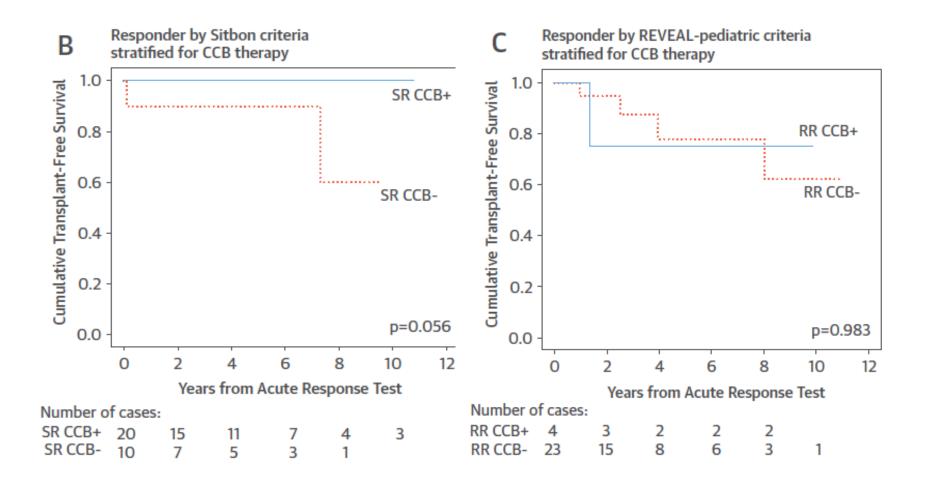

Consensus paediatric IPAH/HPAH treatment algorithm* 5th WSPH (Nice 2013):

 Use of all agents is considered off label in children aside from sildenafil in Europe


lvy D, et al. J Am Coll Cardiol 2013

AVT in pediatric pulmonary hypertension

Douwes et al; J Am Coll Cardiol 2016 Douwes et al; Eur Heart J 2011

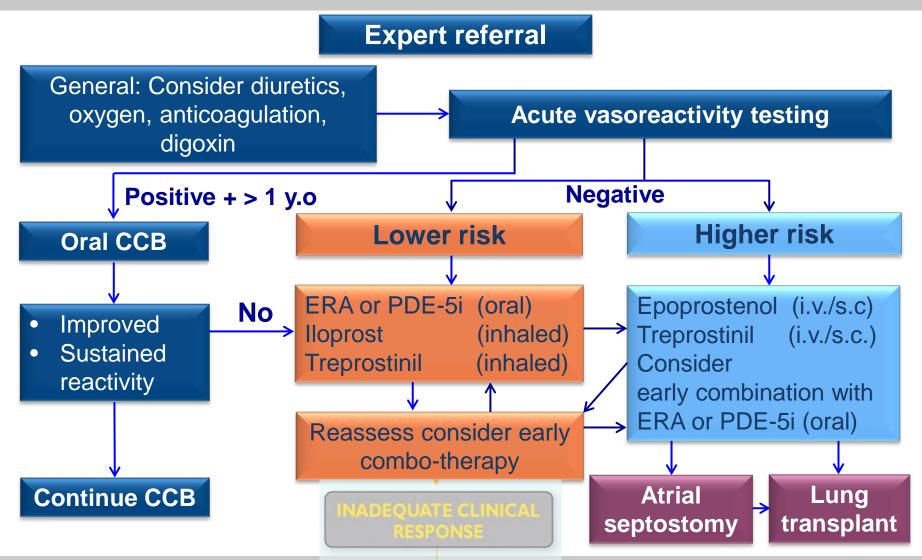

Survival stratified for AVT response status

Douwes et al; J Am Coll Cardiol 2016

Survival of AVT responders stratified for CCB treatment

AVT in Paediatric PAH

For children with IPAH/FPAH,

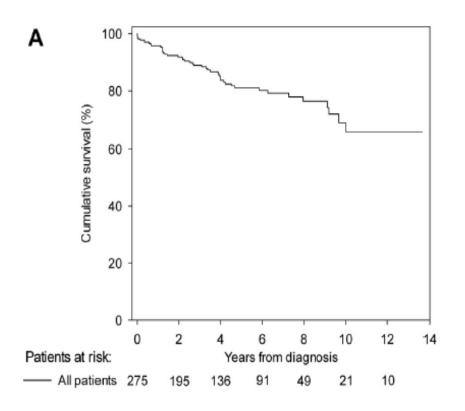

the Sitbon criteria seem to be

the criteria of choice to identify

acute vasodilator responders

who show a sustained beneficial response to CCB therapy.

Consensus paediatric IPAH/HPAH treatment algorithm* 5th WSPH (Nice 2013):



 Use of all agents is considered off label in children aside from sildenafil in Europe

Ivy D, et al. J Am Coll Cardiol 2013

Predictors of Outcome

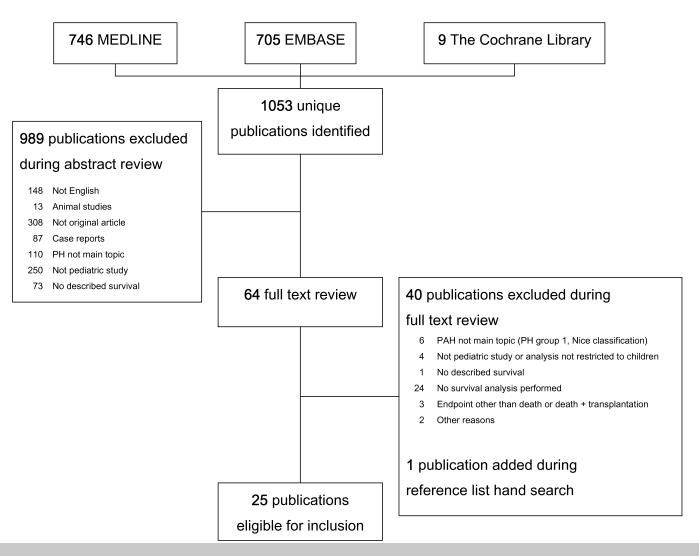
New York/Denver/NL-cohort

Table 4		ard Stepwise Cox Regres ers Associated With Surv	
		Backward Stepwise Regression Analys	
		Hazard Ratio (95% CI)	p Value
Diagnosis			
IPAH/HP	AH	1.00	
PAH-CHD	1	0.103 (0.027-0.396)	0.001
APAH-no	n-CHD	15.974 (4.402-57.960)	<0.001
WHO function	onal class III-IV versus I-II	3.251 (1.316-8.028)	0.011
PVRi		1.053 (1.017-1.090)	0.003
mPAP/mS/	\P*	1.282 (1.104-1.489)	0.001
Treatment	strategy		
PAH-targ	eted monotherapy	1.00	
No speci	fic PAH therapy	19.311 (3.682-101.274)	<0.001
CCB mor	otherapy	0.385 (0.047-3.191)	0.377
PAH-targ	eted dual therapy	0.156 (0.057-0.422)	<0.001
PAH-targ	eted triple therapy	0.094 (0.029-0.302)	<0.001

Risk factors, treatment goals and clinical end points in Pediatric PAH

Risk factors

for risk stratification


Treatment goals

- to evaluate treatment response
- To adapt treatment strategies

Clinical End points

for trial design

Predictors of Outcome in Pediatric PAH A systematic review and meta-analyses

Ploegstra MJ et al Int J Cardiol 2015

n=216 Sandoval 1995, Mexico City, n=18 n=275 n=52 dina 2013, London, n=100 /an Albada 2008, Netherlands n=31 ners 2009, London, n=50 Clabby 1997, US multicenter, mers 2010, London, n=47 oledina 2010, London, n≡64 vy 2010, New York / Denver, odina 2011, London, n=31 /an Loon 2011, Netherlands, n=54 orth 2009, London, n=21 /an Loon 2010, Netherlands, Barst 1999, New York, n=77 Hislop 2011, London, n=101 Wagner 2013, Denver, n=83 us 2009, Denver, n=78 irst 2012, US multicenter, nds. n=47 Apitz 2012, Giessen, n=43 Zijlstra 2014, Multinational, Chida 2012, Japah/China, n=59 Nakayama 2007, Tokyo, sem 2013, Toronto, wes 2013, Nether on 2010, Toronto, Chida 2014, Tokyo, N extractable HR's^a N times significant N times studied Demographic predictors Age × × × > × 10 2 6 × 10 2 5 Sex × Etiology 9 2 7 Clinical predictors WHO-FC ~ ~ ~ ~ ~ 11 8 10 6MWT ж 6 2 1 1 Heartrate 5 2 × 2 ~ Systolic RR 3 4 2 ~ Diastolic RR 2 2 2 Height 2 Weight 2 1 1 BSA 1 -1 1 ~ Heartrate variability 1 1 1 peak VO2 1 1 1 1 VE/VCO2 slope 1 1 1 1 BMPR2 mutation 1 1 1 **Biochemical predictors** 1 1 1 ~ 1 × 🗸 1 (NT-pro)BNP 9 8 8 Uric Acid 3 3 3 Hb 2 1 1 1 Norepinephrine 1 1 1 Apo-A1 1 1 1 ~ TIMP-1 1 1 1 sST2 ~ 1 1 1 Hemodynamic predictors mRAP × × × × 6 × 9 3 mPAP × 11 3 mPAP/mSAP 1 6 4 × 4 ~ **PVRi** × × ¥ V 12 × 9 1 × × Cardiac index 10 4 Qp(i) V 2 × 3 1 1 SvO2 2 2 2 1 PAC(i) 2 1 1 PVR/SVR 2 2 1 Acute vasodilator response 7 3 4 PVR during VRT 2 2 2 1

< < <

~

n=154

N HR's non-overlapping cohorts

5

5

3

4

1

2

2

1

2

2

1

1

1

1

1

4

2

1

1

1

1

1

3

4

2

4

4

2

2

2

4

1

6 3

1 1 1

2 2 2 2

1

1 1 1 1

1 1 1 1

6 5

1 1 1 1

1

1

* √ ✓ ✓ 1 1 1

n=29

n=50

40 candidate predictors

mPAP during VRT PFR during VRT 1 mRAP x PVRi PSVi

Imaging predictors

Echocardiography

CT, fractal dimensions

CMR

n=29 Van Loon 2011, Netherlands, n=154 52 n=86 Clabby 1997, US multicenter, n=50 Barst 2012, US multicenter, n=216 Sandoval 1995, Mexico City, n=18 Zijlstra 2014, Multinational, n=275 Douwes 2013, Netherlands, n=52 Chida 2012, Japah/China, n=54 Moledina 2013, London, n=100 Van Albada 2008, Netherlands, Haworth 2009, London, n=216 Nakayama 2007, Tokyo, n=31 Lammers 2009, London, n=50 Lammers 2010, London, n=47 Moledina 2010, London, n=64 Moledina 2011, London, n=31 Van Loon 2010, Netherlands, lvy 2010, New York / Denver, Kassem 2013, Toronto, n=54 Barst 1999, New York, n=77 Hislop 2011, London, n=101 Wagner 2013. Denver, n=83 Bernus 2009, Denver, n=78 Alkon 2010, Toronto, n=47 Apitz 2012, Giessen, n=43 Chida 2014, Tokyo, n=59 N extractable HR's^a N times significant N times studied

N HR's non-overlapping cohorts

Demographic and islam				
Demographic predictors Age	v	× ✓		× × × × × 10 2 6 5
Sex	Ĵ	2		x x x x x 10 2 5 5
Etiology		*		
2				
Clinical predictors				10 CANDIDATE PREDICTORS
WHO-FC	×			/ / / × × / / / / 11 8 10 4
6MWT				STUDIED IN ≥3 UNIQUE COHORTS:
Heartrate	*			
Systolic RR				× × × 4 2 3 2
Diastolic RR				x 2 2 2 1
Height				x x 4 1 2 2
Weight				× Y × 4 1 2 2
BSA Heartesta variability				Age
Heartrate variability peak VO2				
VE/VCO2 slope				Sex
BMPR2 mutation				JEX
Biochemical predictors				Etiology
(NT-pro)BNP			< < < <	x x x 9 8 8 4
Uric Acid			~	WHO functional class
Hb		×		
Norepinephrine			\checkmark	
Apo-A1				NT-proBNP
TIMP-1 sST2				
\$512				
Hemodynamic predictors				Hemodynamics:
mRAP	×	<i>✓ ✓</i>		x x y 9 3 6 3
mPAP	*	<i>、 、</i>		Mean pulmonary artery pressure
mPAP/mSAP		×		
PVRi	*	s s		Mean right atrial pressure
Cardiac index	×	× 🗸		moan ngin amai procodio
Qp(i)		~		Cardiac index
SvO2		~		
PAC(i) PVR/SVR				
Acute vasodilator response		1		Indexed pulmonary vascular resistance
PVR during VRT	-			
mPAP during VRT				Acute vasodilator response
PFR during VRT				
mRAP x PVRi		~		1 1 1 1
PSVi				× 1 1 1 1
Imaging predictors				

× s s

6 5 6 3

1 1 1 1

1

1 1 1

< < <

~

40 candidate predictors

CMR

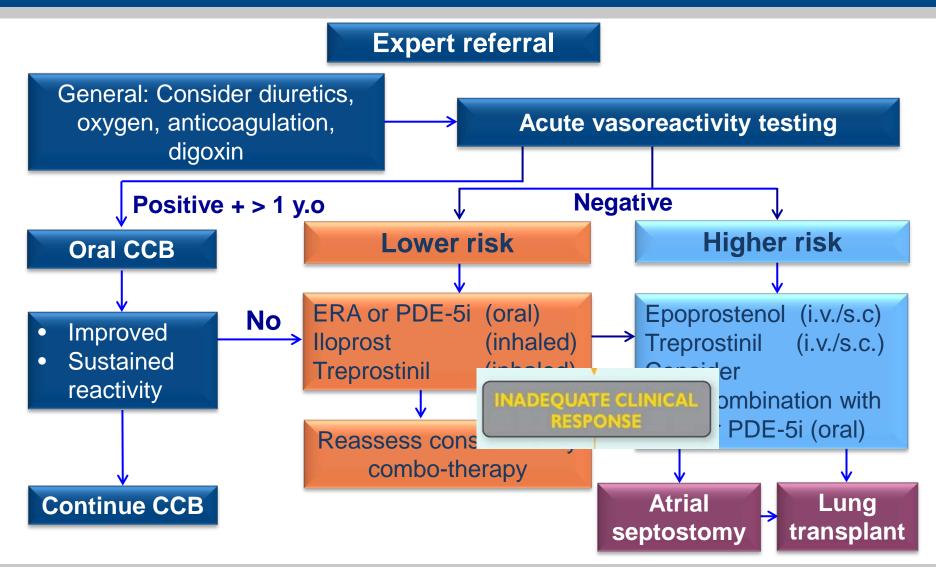
Echocardiography

CT, fractal dimensions

Predictors of outcome in pediatric PAH

A systematic review and meta-analysis

- Six consistently reported predictors of outcome in pediatric PAH:
 - WHO functional class
 - NT-proBNP
 - Mean right atrial pressure
 - Cardiac Index
 - Pulmonary vascular resistance
 - Acute vasodilator response
- This study:
 - Does not preclude the potential of other variables
 - Provides direction for further research


Determinants of prognosis ^a (estimated 1-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk >10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	I, II	III	IV
6MWD	>440 m	165-440 m	<165 m
Cardiopulmonary exercise testing	Peak VO2 >15 ml/min/kg (>65% pred.) VE/VCO2 slope <36	Peak VO2 I I–I 5 ml/min/kg (35–65% pred.) VE/VCO2 slope 36–44.9	Peak VO2 < I I ml/min/kg (<35% pred.) VE/VCO2 slope ≥45
NT-proBNP plasma levels	BNP <50 ng/l NT-proBNP <300 ng/l	BNP 50-300 ng/l NT-proBNP 300-1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm² Pericardial effusion
Haemodynamics	RAP <8 mmHg Cl ≥2.5 V/min/m² SvO2 >65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m² SvO₂ 60–65%	RAP >14 mmHg CI <2.0 l/min/m² SvO ₂ <60%

ESC/ERS Guidelines adult PAH

Galie et al Eur Heart J 2015

Ploegstra MJ et al Int J Cardiol 2015

Consensus paediatric IPAH/HPAH treatment algorithm* 5th WSPH (Nice 2013):

 Use of all agents is considered off label in children aside from sildenafil in Europe

Ivy D, et al. J Am Coll Cardiol 2013

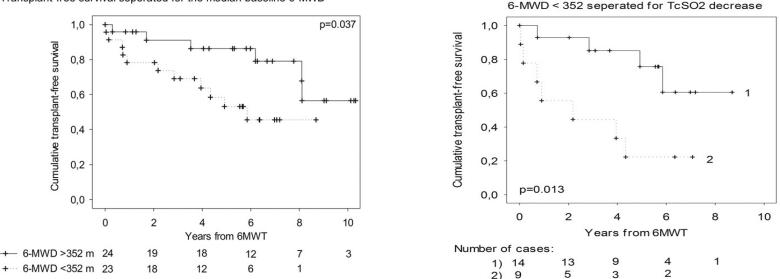
Treatment Goals

Clinically meaningful:

- Clinical event relevant to the patient
 - Death, Tx, Hospitalisation for PAH
- Measures directly how a patient feels, functions or survives
 - Symptoms, Functional class, excercise testing, 6MWD, (ADL-)activities? (provided no negative impact mortality/morbidity)

Surrogate:

- Used as a substitute for a clinically meaningful endpoint
- Changes induced by a therapy on such variable are expected to reflect changes in a clinically meaningful endpoint


Pediatric PAH Treatment Goals WSPH Pediatric Task Force, 2013

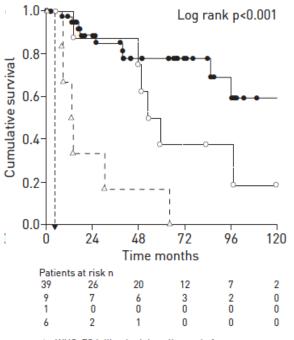
LOWER RISK	DETERMINANTS OF RISK	HIGHER RISK
No	Clinical evidence of RV failure	Yes
No	Progression of symptoms	Yes
No	Syncope	Yes
	Growth	Failure to thrive
I,II	WHO functional class	III,IV
Minimally elevated	BNP / NTproBNP	Significantly elevated, rising
syst CI > 3.0 L/min/m² mPAP/mSAP < 0.75 Acute Vasoreactivity	Hemodynamics	syst CI < 2.5 L/min/m ² mPAP/mSAP > 0.75, rising RAP > 10mmHg PVRI > 20 WU*m ²
	Echocardiography	Severe RV dysfunction, PE
> 450 m, stable	6MWD	≤ 350m
(> z-2 ; % predicted)	(if \geq 8 yr and developmentally able)	decreasing

Level of evidence C

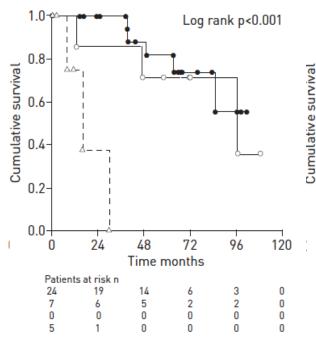
Ivy et al J Am Coll Cardiol 2013

6MWT in Paediatric PAH

Transplant-free survival seperated for the median baseline 6-MWD


The 6-MWD is feasible in children > 7yrs with PAH Both absolute values and z-scores:

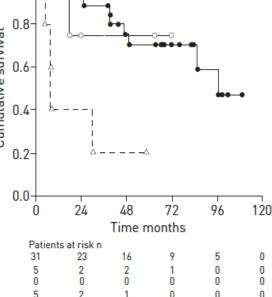
- represents directly "how a child feels, functions"
- correlates with WHO-FC and NTproBNP and CPET
- +/- Predicts transplant free survival


Douwes JM, et al. Heart 2014 Zuk et al; Ped Cardiol 2017 Lammers et al; Arch Dis Child 2011

Treatment Goals in Pediatric PAH

WHO-FC

- WHO-FC I–III at both baseline and after treatment initiation
- ---- WHO-FC IV at baseline, improved to I–III after treatment initiation
- WHO-FC I-III at baseline, deteriorated to IV after treatment initiation
- WHO-FC IV at both baseline and after treatment initiation



NT-pro-BNP

- -● NT-proBNP ≤1200 ng·L⁻¹ at both baseline and after treatment initiation
- ---- NT-proBNP >1200 ng·L⁻¹ at baseline, improved to <1200 ng·L⁻¹ after treatment
- -▼ NT-proBNP ≤1200 ng·L⁻¹ at baseline, deteriorated to <1200 ng·L⁻¹ treatment initiation
- NT-proBNP >1200 ng·L⁻¹ at both baseline and after treatment initiation

1.0

- --- TAPSE >12 mm at both baseline and after treatment initiation
- --- TAPSE <12 mm at baseline, improved to >12 mm after treatment intiation
- -▼ TAPSE ≥ 12 mm at baseline, deteriorated to < 12 mm after treatment initiation
- TAPSE <12 at both baseline and after treatment initiation

Pediatric PAH Clinical Endpoints

- Adult trials are currently shifting towards long-term trials with an event-driven design
 - Feasibility in children to have a 3-5 year trial?

 We are still searching for an endpoint for the paediatric population that is acceptable, reproducible, without risks and feasible with a reasonable number of patients!

Time to clinical worsening in paediatric PAH 5th WSPH (Nice 2013):

- Death
- Transplantation
- Hospitalisation for PAH, unplanned
 - Includes instalment of i.v. epoprostenol therapy
- Deterioration of PAH
 - Increased functional class

and

Signs/symptoms of RHF

and/or

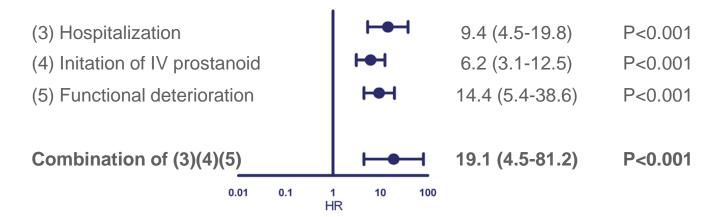
- Decreased exercise capacity (6MWD, CPET) (if applicable)

Endpoint event rates

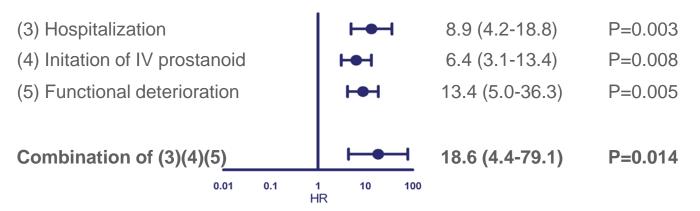
Total group (n=70)			
	Patients	Event rate	
	n (%)	n/100 py	
(1) Death	28 (40%)	10.1	
(2) Lung-transplantation	7 (10%)	2.5	
(3) Hospitalization	38 (54%)	21.4	
(4) Initiation of IV prostanoids	26 (37%)	9.4	
(5) Functional deterioration	50 (71%)	48.1	
			-

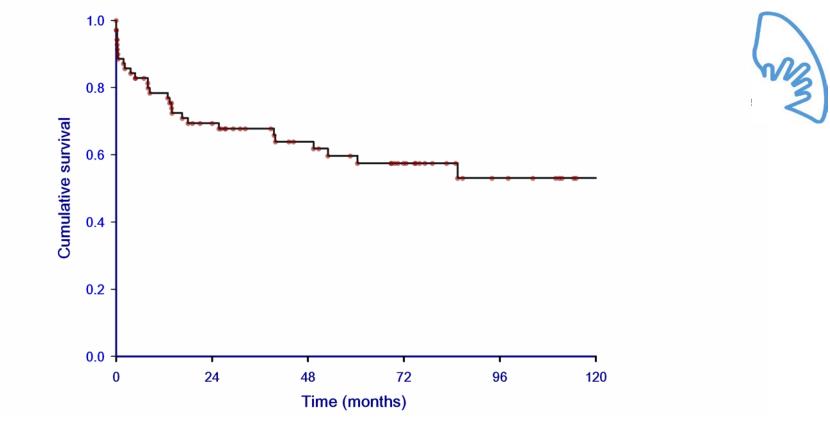
59 (84%)

Combination of (1)(2)(3)(4)(5)

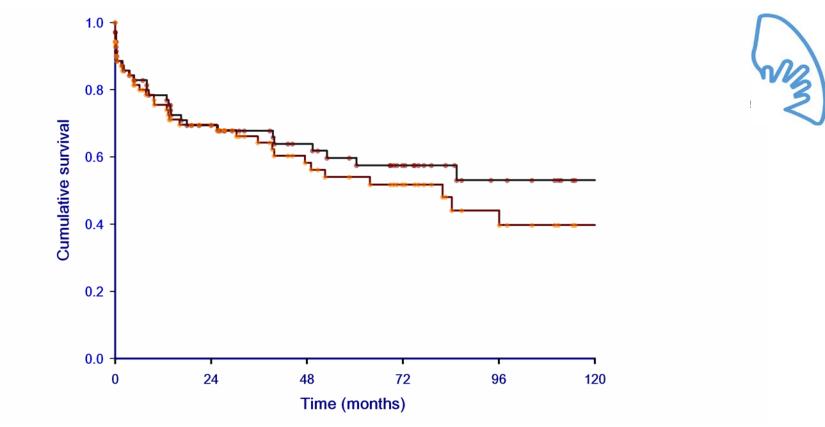

Stratified by diagnostic groups

	Event rate
	n/100 py
Idiopathic PAH (n=37)	102.1
Associated PAH – CHD (n=25)	63.5
Associated PAH – Other (n=8)	264.4

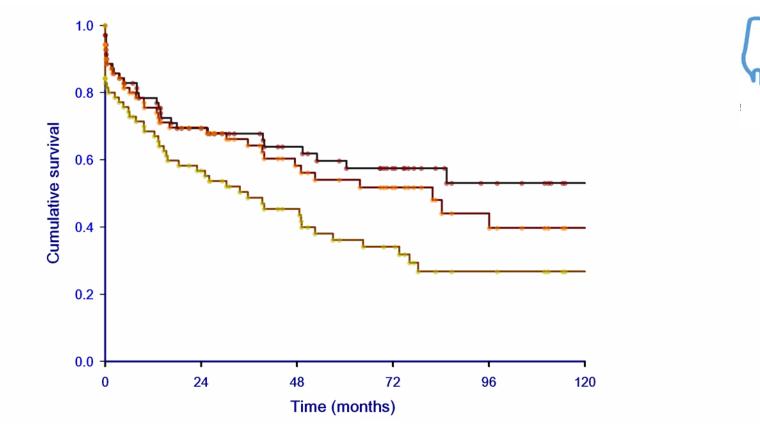

91.5


Association of *soft* endpoint components with *hard* endpoints

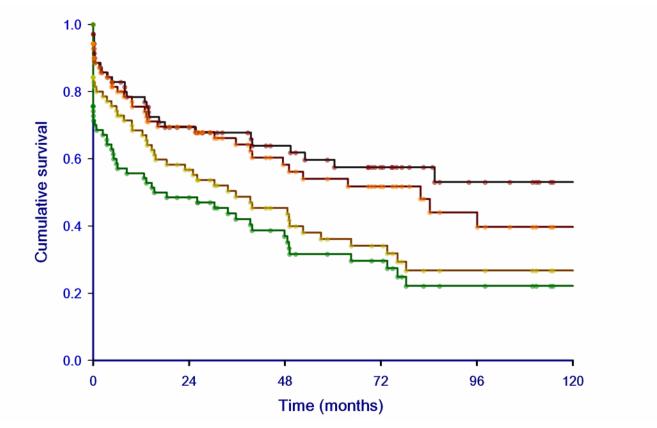
Time-dependent Cox regression analysis



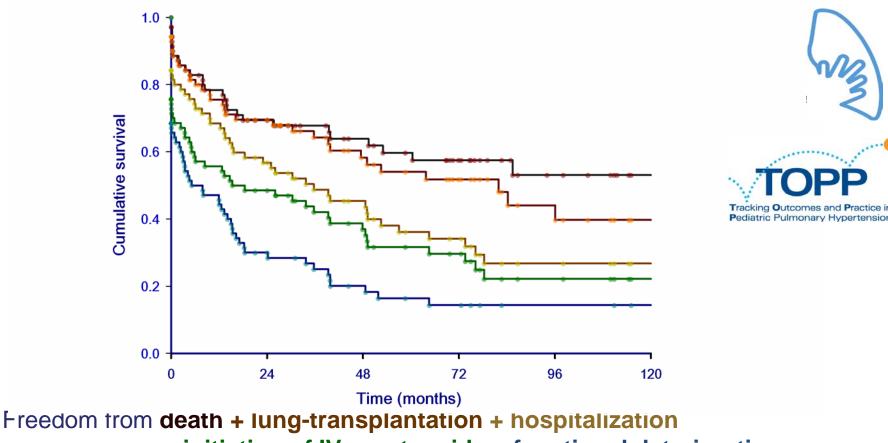
Adjusted for diagnosis



Freedom from death

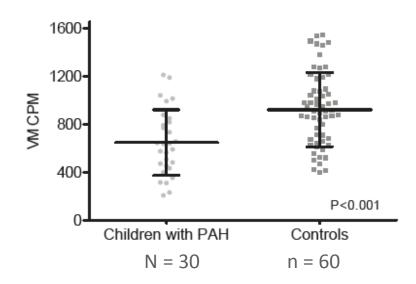


Freedom from death + lung-transplantation


MJ Ploegstra et al. Chest 2015

Freedom from death + lung-transplantation + hospitalization

Freedom from death + lung-transplantation + hospitalization + initiation of IV prostanoids



+ initiation of IV prostanoids + functional deterioration = TIME TO CLINICAL WORSENING

> MJ Ploegstra et al. Chest 2015 M Beghetti et al. submitted

Physical activity in Ped PAH measured by accelerometry: a candidate clinical endpoint?

Time spent in vigorous or moderate PA:

- correlated with WHO-FC and 6MWD
- Predicted event-free survival
- Further validation warranted

Pediatric Formularium for Bosentan: The FUTURE progam over 100 children with IPAH/HPAH

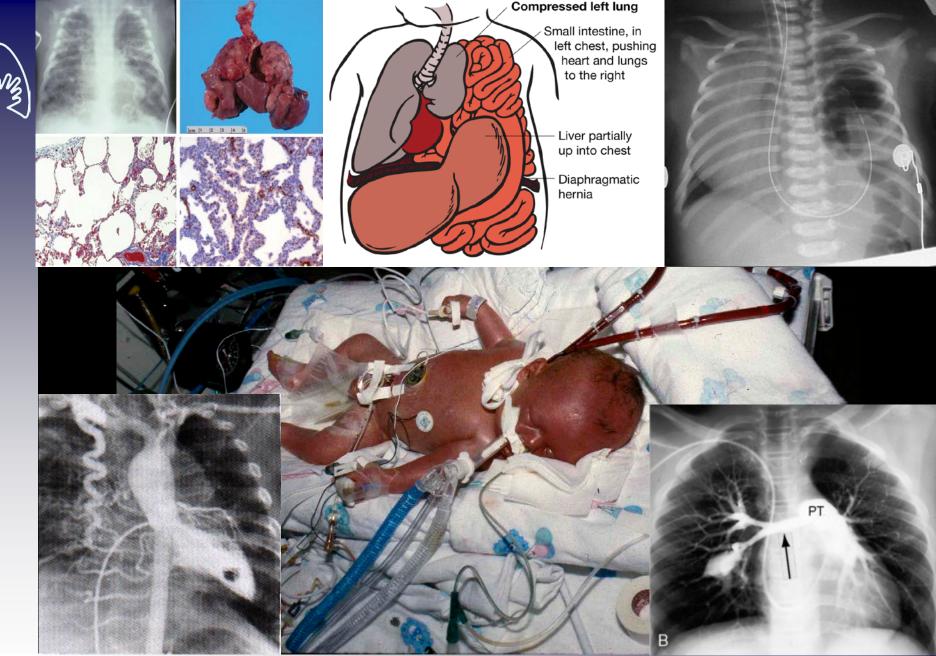
Pharmacokinetic and clinical profile of a novel formulation of bosentan in children with pulmonary arterial hypertension: the FUTURE-1 study

PHARMACOKINETICS

A bosentan pharmacokinetic study to investigate dosing regimens in paediatric patients with pulmonary arterial hypertension: FUTURE-3

FUTURE-2: Results from an open-label, long-term safety and tolerability extension study using the pediatric FormUlation of bosenTan in pUlmonary arterial hypeRtEnsion

- PK/PD, dosing, different age groups
- Tolerabilty
- Safety
- (Exploratory Efficacy??)
- Simulation and modeling!


Beghetti et al Br J Clin Pharmacol 2009 Berger et al, Int J Cardiol 2016 Berger et al Br J Clin Pharmacol 2017

Challenges in Pediatric PAH

Agree on Treatment Goals and Clinical Endpoints

Agree on Study Population

- Definition liPAH/HPAH +/- PAH-CHD)
- Rarity / Heterogeneity?
- Study designs
 - RCT? (Standard of care (80%)
 - Alternative designs
 - SMART
 - Adaptive / Bayesian
 - Valuable information from: cohort studies, registries, historical controls and meta-analyses

University Medical Center Groningen The Netherlands

