

FDA Perspectives on Rare Cancer Drug Development

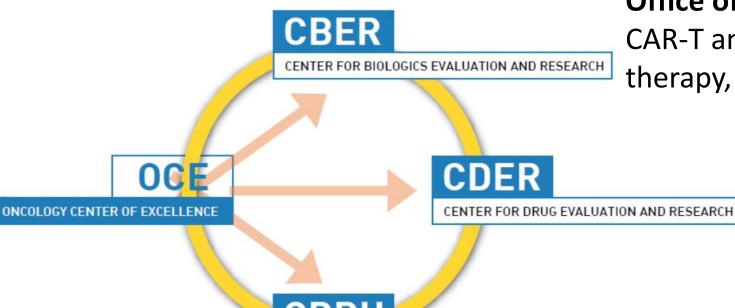
January 12, 2024

Caitlin Tydings, MD
Clinical Reviewer, Division of Oncology 3
Oncology Center of Excellence

Disclaimer

I have no relevant conflicts of interest

Outline



- FDA oncology organizational structure
- Definition of rare cancer
- Current state of approvals
- Challenges
- OCE initiatives to address challenges

FDA Oncology Center of Excellence (OCE)

The Oncology Center of Excellence fosters unified interaction between 3 FDA centers

CENTER FOR DEVICES AND RADIOLOGICAL HEALTH

Office of Therapeutic Products

CAR-T and other cellular therapies, gene therapy, therapeutic vaccines

Office of Oncologic Diseases (OOD)

Small molecules, monoclonal antibodies, antibody-drug conjugates

Office of In vitro Diagnostics and Radiological Health

Companion and complementary diagnostics

Office of Oncologic Diseases (OOD)

Division of Oncology 1 (DO1)

Breast,

cancers

Cancer

genitourinary

supportive care

Division of Oncology 2 (DO2)

Neuro-

tumors

oncology, rare

pediatric solid

cancers and

Division of Oncology 3 (DO3)

- Gastrointestinal.
- Superficial cutaneous cancers, melanoma, sarcoma
- Tissue agnostic

Division of Hematologic **Malignancies 1** (DHM 1)

Division of Hematologic Malignancies 2 (DHM 2)

Division of Hematology Oncology **Toxicology** (DHOT)

Thoracic, head & neck cancer gynecologic &

- Acute leukemia and myelodysplasia **HSCT** Chronic
- myeloid leukemia

- Lymphoma, chronic lymphocytic leukemia, multiple myeloma, and other plasma cell malignancies
- Nonclinical review division for oncology products

What is a Rare Cancer?

- Orphan Drug Act Definition -- <200K in the U.S. (~ <1/1650)
- Using NCI's definition of fewer than 15 cases per 100k/year, 25% of adult cancers are rare.
- Can include molecularly defined subsets of more common cancers (e.g., RET+ non-small cell lung cancer)

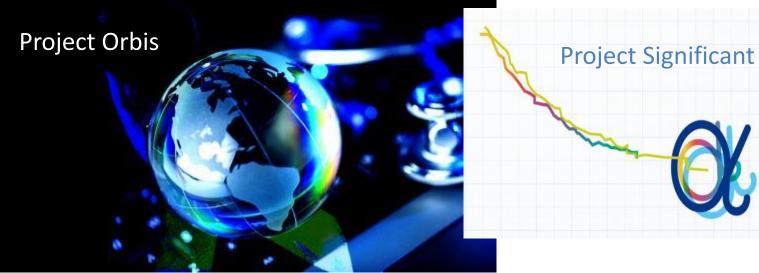
Recent Sarcoma Approvals

Drug	Disease	Primary endpoint	Results
Pazopanib	Advanced soft	PFS vs. placebo	HR: 0.35 (95% CI: 0.26, 0.48)
April 2012	tissue sarcoma		4.6 vs.1.6 months (median)
			DOR: 9.0 (3.9, 9.2) months
Regorafenib	GIST	PFS vs. placebo	HR: 0.27 (0.19, 0.39)
February 2013			4.8 vs. 0.9 months (median)
Trabectedin	Liposarcoma or	PFS vs. DTIC	HR: 0.55 (0.44, 0.70)
October 2015	Leiomyosarcoma		4.2 vs. 1.5 months (median)
			DOR: 6.9 (4.5, 7.6) vs 4.2 (2.9, NE) months
Eribulin	Liposarcoma	OS vs. DTIC	HR: 0.51 (0.35, 0.75)
January 2016			15.6 vs. 8.4 months (median)
Tazemetostat	Epithelioid	ORR	15% (7, 26)
January 2020	sarcoma		DOR: 3.7 to 24.5+ months
Avapritinib	GIST	ORR	ORR: 84% (69, 93)
January 2020			DOR: NR (1.9+, 20.3+)
Pomalidomide	AIDS-related	ORR	HIV+: 67% (41, 87); DOR: 12.5 (6.5, 24.9) months
May 2020	Kaposi sarcoma		HIV-: 80% 44, 98) ; DOR: 10.5 (3.9, 24.2) months
Ripretinib	GIST	PFS vs. placebo	HR: 0.15 (0.09, 0.25)
May 2020			PFS: 6.3 months vs. 1.0 months (median)
Nab-sirolimus	PEComa	ORR	39% (22, 58)
November 2021			DOR: NR (6.5, NE)
Crizotinib	ALK+ IMT	ORR	86% (57, 98)
July 2022			DOR ≥ 12 months: 58%
Atezolizumab	Alveolar soft part	ORR	24% (13, 39)
December 2022	sarcoma	Classified as public by the Euro	DOR ≥ 12 months: 42%

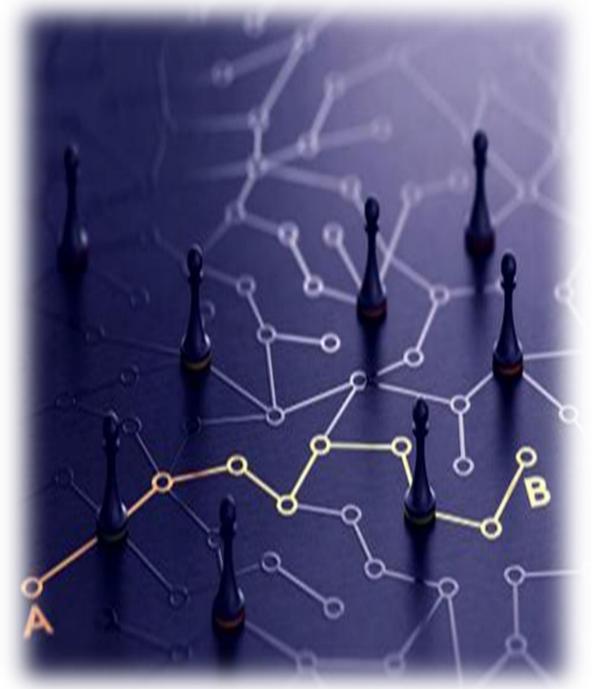
Sarcoma Drug Development Common Challenges

- Obstacles to timely accrual
 - Small patient numbers
 - Geographic dispersion
 - Limited or lack of timely access to molecular testing
- Genotypic/phenotypic heterogeneity
 - Natural history often poorly understood
 - Insufficient understanding of cancer pathophysiology, molecular characteristics
- Challenges to randomization
- Difficulty in assessing response for some sarcomas
 - e.g., Ewing sarcoma, osteosarcoma

OCE Initiatives to Address Challenges



Rare Cancers Program

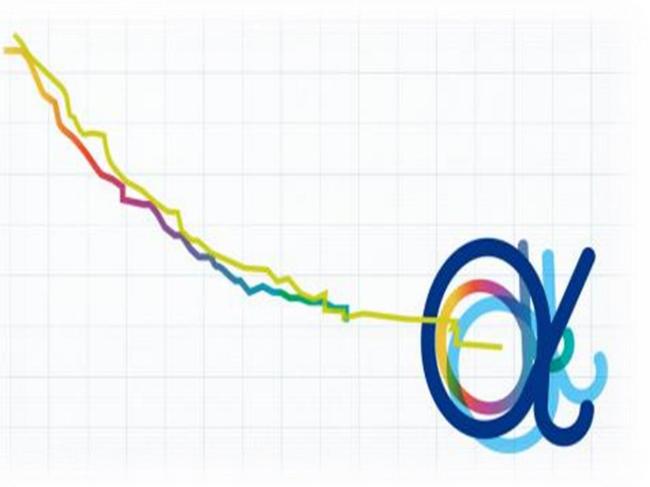

- Leverage multiple OCE projects to address the challenges of developing new treatments for cancers that affect a small number of patients
- Collaboration to identify opportunities to decrease obstacles, harness scientific knowledge and strengthen coordination

Project Catalyst

- Fosters early-stage oncology product innovation and development
- Facilitates scientific discussion, education, guidance, and regulatory engagement
- Focus on academic life science incubators and accelerators as well as small pharmaceutical companies.
- Oncology Regulatory Expertise and Early Guidance (OREEG) program

Project Pragmatica

- Introduce functional efficiencies and enhance patient centricity
- Integrate aspects of clinical trials with real-world routine clinical practice
- Pragmatica-Lung Cancer
 Treatment Trial


Oncology Real World Evidence Program

 Collaboratively advance the appropriate use of real-world evidence in oncology product development to facilitate patientcentered regulatory decisionmaking

Project Significant

- Provides a platform to participate, discuss, and advance the science of oncology trial designs
- Promotes non-product specific scientific discussions on design and analysis of cancer clinical trials
- Fosters collaboration among regulators, professional organizations, industry, academicians, and patients

OCE Tissue Agnostic Drug Development Program

- Tissue agnostic initiatives efforts may benefit rare cancers such as sarcomas
 - Approach based on identification of a biomarker, independent of tumor site
 - Examples:
 - RET fusion positive tumors (selpercaptinib)
 - NTRK fusion positive tumors (larotrectinib, entrectinib)
 - MSI-H/dMMR cancers (pembrolizumab)

Project Orbis

- Collaborative Review Program
- Launched in May 2019
- FDA review provides for independent multi-disciplinary assessment including full review of datasets.
- Current participating countries (Project Orbis Partners): Australia, Brazil, Canada, Israel, Singapore, Switzerland, United Kingdom
- Each country retains independent decision-making for each application

Opportunities for International Collaboration

- Mechanisms for international engagement and sponsor interaction
 - FDA Oncology Global Collaboration
 - Began in 2004 with EMA
 - Now monthly meetings including 4 additional regulatory authorities
 - ACCELERATE Platform projects
 - OCE Minisymposia
 - Invited speakers
 - OCE Conversations on Cancer

Conclusions

- Development of drugs to treat rare cancers can be challenging
 - Typically requires more frequent multidisciplinary engagement with FDA early and often
 - Global development approach important
- Stakeholder engagement and collaborative efforts critical
- Numerous OCE resources can be leveraged to overcome obstacles

Selected FDA Guidances

- Rare Diseases: Common Issues in Drug Development
- Expedited Programs for Serious Conditions Drugs and Biologics
- Developing Targeted Therapies in Low-Frequency Molecular Subsets of a Disease
- Developing and Labeling In vitro Companion Diagnostic Devices for a Specific Group of Oncology Therapeutic Products
- Considerations for the Use of Real-World Data and Real-World Evidence To Support Regulatory Decision-Making for Drug and Biological Products
- Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics
- Real-World Data: Assessing Registries to Support Regulatory Decision-Making for Drug and Biological Products Guidance for Industry

Rare Cancers Program

https://www.fda.gov/about-fda/oncology-center-excellence/oce-rare-cancers-program

OCE-RareCancerProgram@fda.hhs.gov