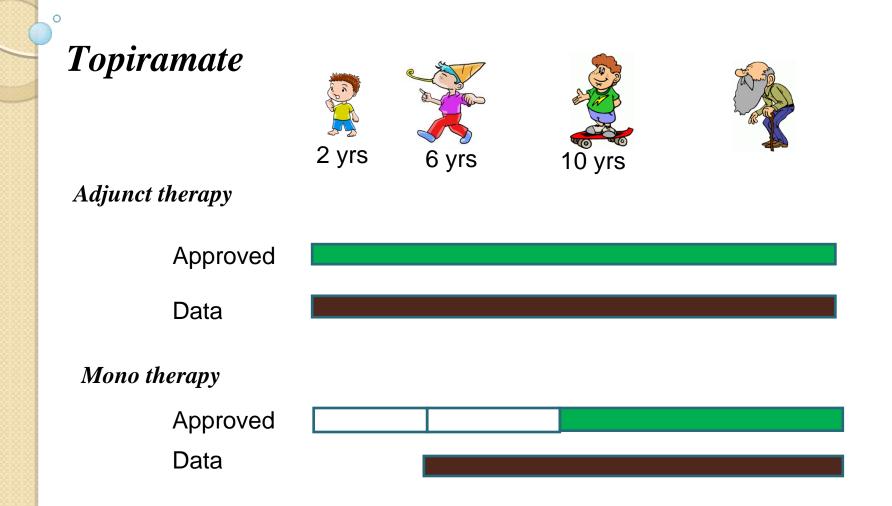
EMA EFPIA workshop Break-out session no. 3

Pharmacokinetic-pharmacodynamic assessment of topiramate dosing regimens for children with epilepsy 2 to <10 years of age



MAIN ISSUES

To bridge the data gap of limited or no information using M&S

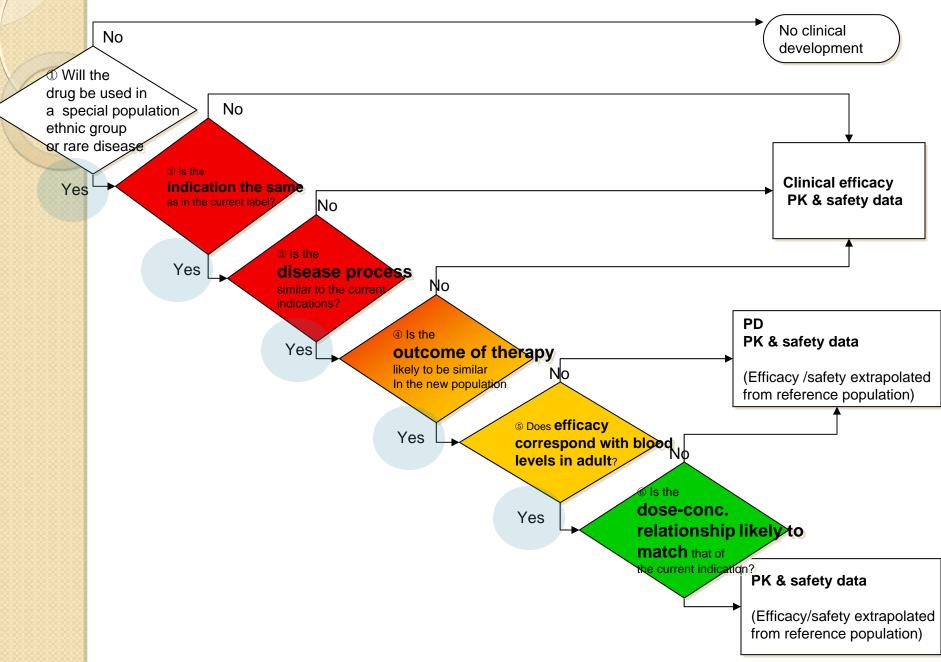
- data integration
 - evidence "synthesis"

Background & Rationale

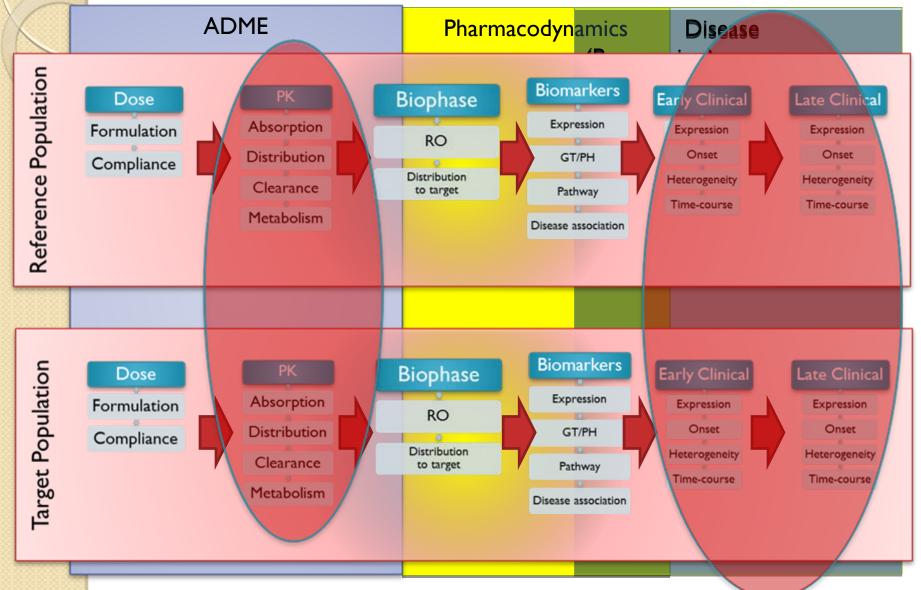
Available Data

- II studies
 - 8 adjunct: 2-68 years (12 patients < 6 years)
 - 3 monotherapy: 6-85 years
- PK

0


- 1217 patients, 4640 observations
- PD Efficacy endpoint
 - Adjunct therapy
 - % reduction in seizure frequency
 - Responder rate
 - Monotherapy:
 - time to first seizure

M&S Assumptions


Pediatrics vs Adults

- Epilepsies in children:
 - Partial onset seizures (POS) and Lennox-Gastaud syndrome
 - treatment effect can be extrapolated from adults to children
 - Infantile epilepsies are specific to children: most relevant issue +++
 - no possible extrapolation for treatment effect from adults to children
 - no possible extrapolation for PK/PD
 - epilepsy is often refractory and may even be worsened
 - no possible extrapolation for adverse events
 - possible model-based extrapolation for PK

Where are we?

Factors Determining Treatment Response...

M&S Results (PK)

0

• Two-compartment with Ist –order absorption

Parameter	Typical value (%SE)	Interindividual variability (%SE)
Clearance (L/h)	·	
CLSTM (baseline clearance monotherapy) (θ_1)	1.21 (1.2)	27.28 (10.2)
CLSTA (effect of adjuvant) (θ_2)	0.479 (25.3)	
FCWT (effect of weight) (θ_3)	0.453 (9.0)	
FCAGE (effect of age) (θ_4)	-0.00306 (30.9)	7
FCIN (effect of INMD) (θ_s)	1.94 (7.8)	
FCVP (effect of valproate) (θ_6)	0.686 (7.8)	7
FCNE (effect of NEMD) (θ_7)	0.635 (6.2)	
Central volume of distribution (L	.)	
VST (A)	4.61 (33.2)	116.2 (35.0)
FVWT (effect of weight) (θ_9)	1.14 (19.1)	
Ka (h-i) (0 ₁₀)	0.105 (27.0)	22.34 (88.2)
K23 (h-1) (θ ₁₁)	0.577 (16.7)	NE
K32 (h-1) (θ ₁₂)	0.0586 (23.6)	NE
CCV residual error (%CV)	CCV residual error (%CV)	
Additive residual error (mg/L)		0.1797 (39.9)

%SE – percent standard error, NE, not evaluated.

M&S Results (PK/PD, adjunct-therapy)

> % change in seizure frequency $Y_{obs,i} = \beta_o + \beta_1 C_{MIN,i} + \beta_2 [\log(B_i) - \log(B)]$

$$\label{eq:main_state} \begin{split} &+ \beta_3 C_{MIN,i}[log(B_i) - log(B)] + \epsilon_{y,I} \\ &\text{where,} \qquad Y = log \bigg(\frac{100(S-B)}{B} + 110 \bigg) \end{split}$$

> responder rate

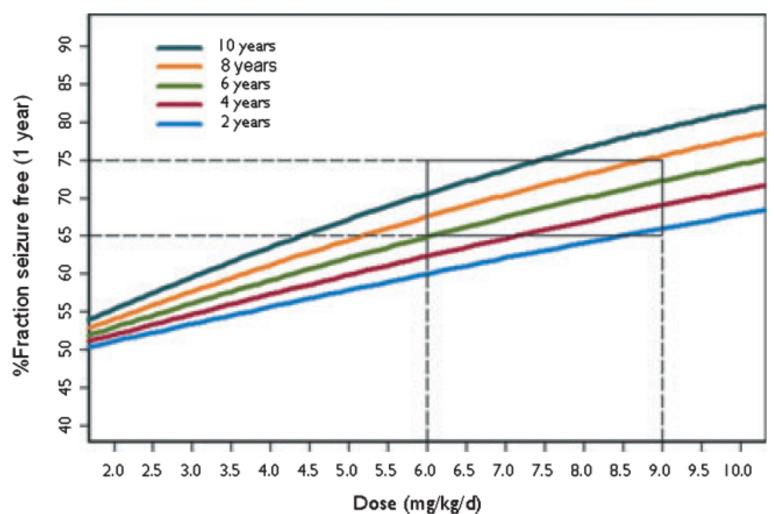
$$P_{RESP} = g \left\{ p_0 + \frac{E_{MAX} \cdot C_{MIN}}{EC_{50} + C_{MIN}} + p_{PED} \cdot PED \right\}$$

where,

$$g\{x\} = \frac{e^x}{1+e^x}$$

M&S Results (PK/PD, monotherapy)

 $log(\lambda_{i}) = \lambda_{0} + \lambda_{t} \cdot t + \lambda_{C_{MIN}} \cdot C_{MIN,i}$ $+ \lambda_{BS3-10} \cdot BS_{3-10,i} + \lambda_{BS10} \cdot BS_{10,i}$


Parameter	Estimate ± SE	p-value
λο	-3.130 ± 0.0919	-
λ_t	-0.051 ± 0.0036	<0.0001
	-0.112 ± 0.0151	<0.0001
λ_{BS3-10}	1.048 ± 0.1046	<0.0001
λ _{BS>10}	2.411 ± 0.1356	<0.0001

SE, standard error; λ_0 , hazard (the instantaneous risk of a first seizure after randomization to occur); λ_t , parameter describing the relationship between log (hazard) and t; λ_{CMIN} , parameter describing the relationship between log (hazard) and C_{MIN} ; λ_{BS3-10} , parameter describing the relationship between log (hazard) and $BS_{3-10,i}$; $\lambda_{BS>10}$, parameter describing the relationship between log (hazard) and $BS_{3-10,i}$; $\lambda_{BS>10}$, parameter describing the relationship between log (hazard) and $BS_{3-10,i}$.

M&S Results (Dose-Response, monotherapy)

0

I-2 Seizures/Baseline Period

Conclusions

- Absence of evidence of an effect of age is ONLY VALID for POS and Lennox-Gastaud syndrome
- Otherwise MAJOR EFFECT OF AGE
 - other types of epilepsies ... the most relevant to consider specifically
 - symptoms are different (epilepsy syndromes) and are severe
 - refractory epilepsies
 - poor cognitive prognosis
 - need for a specific approach to infantile and juvenile epilepsies resistant to usual first and second line anti-epileptic treatment: 2 step approach:
 - add-on observational approach: identification of candidate syndrome (s)
 - add-on comparative trial vs placebo in the identified syndromes in eedom in different age groups.
- Avoid oversimplification in extrapolation for PK while ignoring the maturational differences in younger age-groups (below 2 years of age): model-based modelling approach rather than allometric approach freedom rate after 1 year for pediatric patients aged 2–

- FDA decision tree is not fully adequate in the most specific aspects of paediatric drug development due to oversimplification