

PK data for supporting PK-PD analyses Essential PK data

Elisabet Nielsen and Lena Friberg

Pharmacometrics Research Group Department of Pharmaceutical Biosciences Uppsala University Sweden

Outline

- Overview section 4.3 of draft guidelines
 "Clinical pharmacokinetic data to support PK-PD analysis"
- Differences in PK
 - Healthy volunteers vs patients
 - Consequences in terms of PTA
- When is the PK profile important in the PKPD characterization?

PK Guidelines

- Guideline for pharmacokinetic studies in man (EMA/CHMP/EWP/ 3CC3a)
- Guideline on reporting the results of population pharmacokinetic analyses (EMEA/CHMP/EWP/185990/2006)
- Guideline on the role of pharmacokinetics in the development of medicinal products in the paediatric population (EMEA/CHMP/EWP/147013/2004)
- Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with impaired hepatic function (CPMP/EWP/2339/02)
- Note for guidance on the evaluation of the pharmacokinetics of medicinal products in patients with impaired renal function (CHMP/EWP/225/02)

4.3.1. PK data from uninfected subjects

Lines 326-331

- Initial PK data from healthy volunteers
- Intensive PK sampling after single and multiple doses
- Describe plasma /serum profiles and routes of metabolism and elimination
- Effects of renal and/or hepatic impairment may need to be assessed
- Initial POPPK model based on healthy subjects
- Used for preliminary dose assessment

4.3.2. PK data from infected patients

Lines 334-352

- PK differences in the infected target patient population
 - renal hyperfiltration
 - altered volume of distribution
 - greater inter-individual variability
 - other covariate relationships
- Intensive PK data in a subset and sparse sampling from total population
- Intended target population
 - site of infection
 - severity of infection
- Update POPPK model
- Sparse sampling of all patients in pivotal clinical efficacy studies

PK in healthy volunteers vs patients

- PK differences due to pathophysiological alterations
 - Indication
 - Severity of illness
 - Range from "healthy" to critically ill patients
 - Intra-individual changes during course of treatment
- Physicochemical properties of the antibiotic

Reviews: PK in the critically ill:

- Blot SI, et al. Advanced Drug Delivery Reviews. 2014, 77, 3-11
- Robets JA, et al. Lancet Infect Dis 2014 14: 498-509
- Felton TW et al. Diag Microbiol Infec Dis 79 (2014) 441–447
- De Paepe P et al. Clin Pharmacokinet 2002: 41 (14): 1135-1152

PK in healthy volunteers vs patients

Absorption

- Decreased perfusion of muscles, skin and splanchnic organs
- Lower and less reliable absorption from oral, transdermal, subcutaneous and intramuscular routes
- Few examples in literature
- High variability in absorption related parameters

PK in healthy volunteers vs patients

Distribution

- Vasodilation and increased vascular permeability
- Capillary leak syndrome and fluid shift from intravascular compartment to interstitial space
- Edema and "third spacing"
- Infusion of fluids to maintain pressure
- Hypoalbuminemia (fu increases)
- Microvascular failure (tissue distribution decreases)
- **Hydrophilic antibiotics**: substantial increase in Vd Example aminoglycosides, increase correlated to disease severity
- Lipophilic antibiotics: minor influences on Vd Example macrolides

PK in healthy volunteers vs patients

Renal elimination

- Glomerular hyperfiltration, fluid resuscitation, vasopressin use
 - Augmented renal CL (>130 ml/1.73m²)
 - Young men with trauma, sepsis, burns
- Reduced kidney perfusion and acute kidney injury
 - Decreased renal CL, potential need of renal replacement therapy
 - Potential for compensatory elimination (Example ciprofloxacin)
- High inter-individual variability

Hepatic elimination

- Reduced hepatic blood flow, liver failure, hypoproteinemia cholestasis, hepatocellular injury
- Consequences for PK often unclear

Consequences in terms of PTA

Example: Flucloxacillin

Healthy volunteers

- 15 healthy volunteers
- Cross-over study, Heracillin[®], p.o. 500 mg and 750 mg
- Frequent PK sampling
- 2 compartment disposition, first-order transit absorption model

Parameter	Estimate	IIV
Clearance, CL/F (L/h)	10.5 (7.1)	25.5 (16)
Inter-compartmental clearance, Q/F (L/h)	0.997 (36)	-
Central volume of distribution, Vc/F (L)	1.78 (17)	-
Peripheral volume of distribution, Vp/F (L)	2.68 (18)	12.5 (68)
Absorption rate constant, ka (h ⁻¹)	0.859 (7.6)	12.3 (27)
Mean transit time, MTT (h)	0.425 (13)	31.4 (21)
Number of transit compartments, N (-)	2.70 (16)	46.3 (28)
Proportional residual error (%)	24.5 (7.7)	-

Nielsen EI. et al. PAGE: 2012; Venice, Italy

Consequences in terms of PTA Example: Flucloxacillin

Healthy volunteers

- PTA vs MIC for 500, 750, 1000 and 1500 mg q8h oral flucloxacillin
- Protein binding assumed to be 95% (fu 0.05)
- Parameter uncertainty (non-parametric bootstrap)

Consequences in terms of PTA Example: Flucloxacillin

"Healthy" patients

- Increased inter-individual variability in PK parameters (IIVx2)
- Less steep PTA curves
- Lower target attainment in the high, most interesting PTA region

UNIVERSITET

Consequences in terms of PTA Example: Flucloxacillin

Critically ill patients

- 10 critically ill patients with hypoalbuminemia (\leq 32 g/L)
- Excluded severe renal dysfunction (Pcrea>170 mmol/L)
- MSSA infections nosocomial pneumonia, bacteremia, epidural abscesses, meningitis and surgical site prophylaxis
- Minor changes in CL, increase in V

 Table 2. Pharmacokinetic parameters after a maintenance dose for total flucloxacillin in different patient populations; values are given as median (interquartile range) or mean ± SD

	CL (L/h)	CL (L/kg/h)	V (L)	V (L/kg)	t _{1/2} (h)
Total flucloxacillin (this study, non-compartmental analysis: $n = 10$)	9.01 (8.68–17.55)	0.10 (0.10-0.20)	20.00 (12.45-27.20)	0.22 (0.14-0.30)	2.45 (1.26-2.54)
Total flucloxacillin (healthy volunteers; $n=10$) ²⁰ Total flucloxacillin (hospitalized patients; $n=7$) ²⁴	8.18 ± 0.20 5.53 ± 0.87	$\begin{array}{c} 0.12 \pm 0.28 \\ 0.08 \pm 0.01 \end{array}$	9.97±0.17 12.27±2.27	0.14 ± 0.24 0.18 ± 0.03	0.84±0.59 1.54±0.35

Ulldemolins et al. J Antimicrob Chemother 2010; 65: 1771–1778

Consequences in terms of PTA Example: Flucloxacillin

Critically ill patients

- Increased inter-individual variability in PK parameters (IIVx2)
- Increased V (x1.6)
- Increased V -> Only minor alterations in PTA curves

UNIVERSITET

Consequences in terms of PTA Example: Flucloxacillin

Critically ill patients

- Increased inter-individual variability in PK parameters (IIVx2)
- Augmented or reduced CL (CLx2 and CLx0.5)
- Results in PTA shifts

PK importance in PKPD characterization

PK importance in PKPD characterization PK/PD indices

PK importance in PKPD characterization PK/PD indices

UNIVERSITET

PK importance in PKPD characterization PK/PD indices

Are the PK/PD indices PK dependent?

UNIVERSITET

PK importance in PKPD characterization *PK/PD indices*

Are the PK/PD indices PK dependent?

Kristoffersson *et al*, submitted

PK importance in PKPD characterization PK/PD indices

UPPSALA UNIVERSITET

UNIVERSITET

PK importance in PKPD characterization PK/PD indices

Theoretical mathematical framework

Kitamura Y, et al. Drug Metab Pharmacokinet. 2014;29(6):455-62.

UNIVERSITET

PK importance in PKPD characterization PK/PD indices

Table 4. List of PK/PD targets for dose adjustment adopted by selected ICUs

Wong G. et al. J Antimicrob Chemother 2014; 69: 1416 –1423

Dulhunty JM et al. Am J Respir Crit Care Med 2015, 22 Jul

PK importance in PKPD characterization

PK/PD indices vs *Pharmacometric approach*

PK importance in PKPD characterization

Pharmacometric approach

Translate results from experiments with varying PK profiles

Characterization of full time-course

- PK (one or several drugs)
- Bacterial effect (single and combination treatment)
- Emergence of resistance

UNIVERSITET

PK importance in PKPD characterization

Pharmacometric approach

UNIVERSITET

PK importance in PKPD characterization

Pharmacometric approach

PK importance in PKPD characterization Pharmacometric approach

Are PKPD models based on in vitro data predictive of in vivo results?

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec. 2010, p. 5298–5302 0066-4804/10/\$12.00 doi:10.1128/AAC.00267-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Vol. 54, No. 12

Kiyoshi Sugihara,¹* Chika Sugihara,¹ Yoko Matsushita,² Naotoshi Yamamura,² Mitsutoshi Uemori,³ Akane Tokumitsu,¹ Harumi Inoue,¹ Masayo Kakuta,¹ Eiko Namba,¹ Hatsumi Nasu,¹ and Tetsufumi Koga¹

Biological Research Laboratories IV, Daiichi Sankyo Co., Ltd., Tokyo, Japan¹; Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan²; and Clinical Data and Biostatistics Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan³

Elisabet Nielsen - The Pharmacometrics Group, Uppsala University – EMA workshop 2015

In vivo Dose fractionation study Meropenem *P. aeruginosa* 12467

UNIVERSITET

PK importance in PKPD characterization

Pharmacometric approach

In silico replication of this in vivo dose fractionation study

Kristoffersson *et al, Submitted*

PK importance in PKPD characterization

Pharmacometric approach

In vivo

Dudhani et al.,

AAC, 2010

PK importance in PKPD characterization

Pharmacometric approach

Vol. 54, No. 3

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 2010, p. 1117-1124 0066-4804/10/\$12.00 doi:10.1128/AAC.01114-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Elucidation of the Pharmacokinetic/Pharmacodynamic Determinant of Colistin Activity against Pseudomonas aeruginosa in Murine Thigh and Lung Infection Models[∀]

Rajesh V. Dudhani,¹ John D. Turnidge,^{2,3} Kingsley Coulthard,^{2,4} Robert W. Milne,⁴ Craig R. Ravner,¹[†] Jian Li,¹[‡] and Roger L. Nation¹^{‡*}

In silico Mohamed et al., AAC, 2014 Khan et al. Submitted

5.

0.1

Elisabet Nielsen - The Pharmacometrics Group, Uppsala University – EMA workshop 2015

10

fAUC/MIC

100

0

10

fC_{MAX}/MIC

0.1

50

fT>MIC

PK importance in PKPD characterization

PK/PD indices or a Pharmacometric approach

PK/PD indices:

- Summary of PK profile: Shape of the PK curve of importance, PK dependency might limit the predictive capacity
- Static PD endpoint: Relevance of 24h (or other) efficacy assessment?
- No single "true" PK/PD index

Pharmacometric approach:

- Use time-course of PK and PD
- PKPD models based on static timekill can be predictive of dynamic exposures and vivo pre-clinical results
- Use of all available data
- Combination therapy
- Resistance development

Acknowledgements

Pharmacometrics group, Uppsala University, Sweden Roche Pharma Research and Early Development, Innovation Center Basel Meda AB, Solna, Sweden

Special thanks to:

- Anders Kristoffersson
- Jason Roberts
- Joe Standing

