Population pharmacokinetics and optimal design of paediatric studies for Famciclovir

Kayode Ogungbenro, Ivan Mathews, Leon Aarons

School of Pharmacy & Pharmaceutical Sciences

The University of Manchester

Outline

- Introduction
- Aims
- Data description
- Method
 - Modelling
 - Paediatric dose adjustment
 - Optimisation of sampling times and windows
 - Sample size calculations
- Results
 - Modelling
 - Paediatric dose adjustment
 - Optimisation of sampling times and windows
 - Sample size calculations
- Conclusion

Introduction

- Famciclovir
 - orally administered pro-drug of the antiviral agent penciclovir
 - little or no parent compound is recovered in blood or urine
 - licensed in adults for treatment of herpes zoster and herpes simplex infections (125 – 750 mg)
- PK extensively studied in adults clinical success
- No population PK analysis has been published
- Limited information about the PK in paediatrics
 - Two attempts (post filing) were terminated early recruitment issues, probably related to relatively intensive sampling

Aims

- To develop a population PK model
 - Adults and paediatrics (appropriate covariates)
- Design single dose studies in four paediatrics age groups (1month 1 yr, 1 2 yr, 2 5 yr and 5 12 yr)
 - Appropriate dose
 - Limited sampling designs
 - Adequate number of patients

Data

 Plasma data from 6 clinical trials was provided by Novartis (including 2 paediatric studies, a bioavailability and a renal impairment study)

Covariate	Combined		Paediatrics			Adults			
	Mean	SD	Range	Mean	SD	Range	Mean	SD	
Number of subjects	69	-	-	23	-	-	46	-	-
Number of occasions	160	-	-	39	-	-	121	-	-
Total plasma conc. data	1676	-	-	322	-	-	1354	-	-
Age (years)	26.5	15.8	2-63	8.1	3.4	2-17	35.8	10.6	20- 63
Weight (kg)	59.3	23.7	13.9- 94.6	29.5	12.2	13.9- 59.8	74.1	9.7	56.4- 94.6
Serum creatinine (mg.dL ⁻¹)	0.94	0.33	0.28- 1.94	0.60	0.13	0.28- 0.78	1.10	0.27	0.69- 1.94
Sex (M/F)	62/7	-	-	17/6	-	-	45/1	-	-
Creatinine clearance (mL.min ⁻¹)	87.9	34.5	27.6- 175.6	58.2	19.9	27.6- 122.5	102.8	30.4	45.5- 175.6

Method - modelling

- NONMEM V1 (FOCE/INTERACTION)
- 1,2,3 compt first order absorption PK models were tested
- Add, Exp IIV models and add, prop or combined residual error models were tested
- Covariates difference in obj function and graphics
- An allometric weight model was applied to volume and clearance parameters
- Several age and CRCL models were tested
- Bootstrap analysis of the final model

Method - dose adjustment

Simulations

- Reference values obtained for weight and serum creatinine (adults and paediatric age groups) to allow extrapolation of PK model
- Dose adjusted to achieve the same AUC and Cmax as obtained for a 500mg adult dose

Savory, AnnClinBiochem 1990; 27: 99-101

Method - optimisation of sampling times and windows

- Model based approach population Fisher information matrix (PFIM) in MATLAB
- Optimisation of sampling times
 - Modified Fedorov exchange algorithm (grid size 0.25)
 - PFIM evaluated by simultaneous Monte Carlo integration over covariate distributions (Latin hypercube sampling)
 - Design region between 0 and 8 hr, single elementary design and 5 times per patient
- Optimisation of sampling windows
 - Sampling windows around D-optimal time points
 - Assuming 95% mean efficiency level and uniform sample distribution

Sample size calculations

- Determined using simulations in NONMEM based on confidence interval approach
- Power of the final sampling windows design to estimate 95% confidence interval on the mean of a parameter of choice (CL and V) within specified precision levels
- Precision limits 30, 40 and 50%
- 200 simulations in NONMEM (FOCE/INTERACTION)

- Final model 2 compartment first order absorption model with lag time
- Proportional IIV and exponential residual error model
- Covariates
 - allometric weight on CL, V1, V2 and Q
 - empirical fractional age model on CL
 - empirical CRCL power model on CL

$$CL_{<40 \text{ yrs}} = \theta_{CL} * \left(\frac{WT}{WT_{STD}}\right)^{3/4} * \left(\frac{K_{AGE<40} - AGE}{K_{AGE<40} - AGE_{STD}}\right) * \left(\frac{CLCR}{CLCR_{STD}}\right)^{P_{CLCR}}$$

$$CL_{\geq 40 \, yrs} = \theta_{CL} * \left(\frac{WT}{WT_{STD}}\right)^{\frac{3}{4}} * \left(\frac{K_{AGE \geq 40} - AGE}{K_{AGE \geq 40} - AGE_{STD}}\right) * \left(\frac{CLCR}{CLCR_{STD}}\right)^{P_{CLCR}}$$

$$V_{1} = \theta_{V_{1}} * \left(\frac{WT}{WT_{STD}}\right)^{1}, V_{2} = \theta_{V_{2}} * \left(\frac{WT}{WT_{STD}}\right)^{1}, Q = \theta_{Q} * \left(\frac{WT}{WT_{STD}}\right)^{\frac{3}{4}}$$

Parameter	Original da	ta	Bootstrap procedure		
	Estimate	CV (%)	Estimate	CV (%)	
ka (h ⁻¹)	1.86	10.3	1.87	10.7	
CL (L.h ⁻¹ .70kg ⁻¹)	31.2	6	31.3	6.27	
V1 (L.70kg ⁻¹)	28.6	6	28.5	6.19	
V2 (L.70kg ⁻¹)	54.5	4.9	54.7	5.03	
$Q (L.h^{-1}.70kg^{-1})$	60.2	7.1	60.3	7.03	
F	0.598	2.9	0.598	2.97	
T-lag (h)	0.206	2.2	0.206	2.39	
K _{AGE<40}	159	37.4	-	-	
$K_{AGE \ge 40}$	113	24.4	-	-	
exponent of FCL _{CR}	0.28	45.7	0.270	47.9	
BSV_{ka}	0.640	25.9	0.627	12.8	
$\mathrm{BSV}_{\mathrm{CL}}$	0.23	22.3	0.220	11.4	
BSV_{V1}	0.003 fix	-	0.003 fix		
BSV_{V2}	0.255	29.3	0.250	14.8	
BSV_Q	0.342	59.4	0.331	27.7	
Proportional error	0.221	9.6	0.221	4.74	
Additive error (mg.L ⁻¹)	0.01 fix	-	0.01 fix		

Results - dose adjustment

10mg/kg gave the best AUC ratio and Cmax ratio

Results – sampling times and windows optimisation

Sampling	Sample	Age Groups				
Properties	Number	1	2	3	4	
	1	0.25	0.25	0.25	0.25	
Optimal	2	0.65	0.70	0.29	0.25	
Sampling	3	1.35	1.35	1.30	1.00	
Times (hr)	4	3.15	3.05	3.00	2.80	
	5	8.00	8.00	8.00	8.00	
	1	0.25 - 0.28	0.25 - 0.28	0.25 - 0.28	0.25 - 0.27	
Optimal	2	0.53 - 0.78	0.58 - 0.82	0.58 - 0.82	0.62 - 1.08	
Sampling	3	0.93 - 1.77	0.70 - 2.00	0.66 - 1.94	0.26 - 1.73	
Windows (hr)	4	2.41 - 3.89	2.47 - 3.63	2.48 - 3.52	2.61 - 2.99	
	5	7.37 - 8.00	7.45 - 8.00	7.48 - 8.00	7.78 - 8.00	

- Windows very close in all age groups
- High sensitivity (narrow window) with window 1
- Overlap between windows 2 and 3
- New single sampling windows for all paediatrics: 0.25 0.4,
 0.5 1, 1.25 1.75, 2.75 3.5 and 7.25 8 hr
- Final windows 85% efficient for all paediatric age groups 16

Results – sample size calculations

- Based on V1
- Final criterion –80% power and40% precisionlimits
- 30 patients for each age groups (120 in total)
- Final sample size SE(%) for ka, CL,
 V1, V2, Q is 25, 5,
 25, 10 and 26

Conclusion

- A population PK model for adults and paediatrics has been described
- Adult clearance and total volume of distribution values are comparable to published values from noncompartmental analysis
- Age and CRCL in addition to weight are needed to explain the IIV on clearance
- There is a need for dose adjustment in paediatrics and 10mg/kg weight is adequate based on simulation
- An important area of application of optimal design is paediatric population (limited sampling - ethical and practical constraint) – help to define only the important sampling times
- Future famciclovir paediatric studies using appropriate dose, limited sampling designs and adequate number of subject have been determined