

Potency & Stability Testing for ATMP

SME Workshop EMA

Marcel Hoefnagel & Charlotte De Wolf

Presented by Marcel Hoefnagel on 16 April 2015 Assessor Biopharmaceuticals, CBG-MEB Medicines Evaluation Board, The Netherlands

Outline

- Rationale of Potency & Stability testing
- Examples
 - Autologous DC
 - Tissue Engineering Product
 - Gene Therapy product
- Additional Recommendations
- Guidelines & Further reading

Rationale

ICH 6QB, **potency** is the **quantitative measure of biological activity** based on the **attribute** of the product, which is **linked to the relevant biological properties**.

The **assay** demonstrating the biological activity should be **based on** the **intended biological effect** which should **ideally** be **related to** the **clinical response**.

ICH Topic Q 6 B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products

Guideline Cell-Based Medicinal Products (EMEA/CHMP/410869/2006)

Major cellular functions (viability, self renewal, death and differentiation) are pivotal to the quality, function and sustainability

Monitor these as IPC / at release using surrogate markers and appropriate technology (e.g. gene expression profiles by microarrays, flow cytometric immuno-fluorescent analysis, cell cloning, PCR and many others)

1) in vitro assays using cell systems

2) in vivo assays using animal models.

In vivo assays for potency may also be useful especially when experimental animal models are available

Characterisation or Release;

Potency is a key parameter for complex products which are difficult to characterise.

A combination of **multiple methods** may be needed to adequately define the potency of these products **during the development**. Certain assays may be needed to **control process changes**, whereas **others are more suitable for release testing**.

Carefully consider potency testing for characterization / comparability and release. Preferably, the potency assay should reflect the clinical Mechanism of Action.

EUROPEAN MEDICINES AGENCY

Stability testing

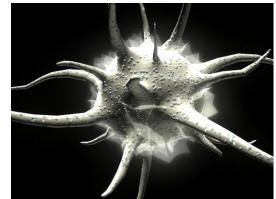
- A shelf life shall be determined for
 - i) Intermediates subject to storage
 - ii) Components of combined CBMP
 - iii) Active substance (Drug Substance)
 - iv) Finished product (Drug Product)
- Specified storage conditions
- Valid **in-use** shelf life (after opening from transport container) including temperature range

Transportation & storage conditions supported by experimental data
Potency & Stability testing for ATMP

Stability testing

- Document methods for freezing and thawing
- Combination products: stability testing for cellular / non-cellular components stored separately and in combination, where possible
- Determine impurities and degradation products originating from the structural component (matrix, scaffold, device)
- If limiting cell numbers (autologous cell products): test shelf life of structural components with (relevant) different cells (Justify!)

Casus 1: autologous DCs for immunotherapy


Dendritic cells pulsed with antigens (e.g. tumour cell lysate)

- DC = autologous
- tumour cell lysate = allogeneic
- cryopreserved in DMSO

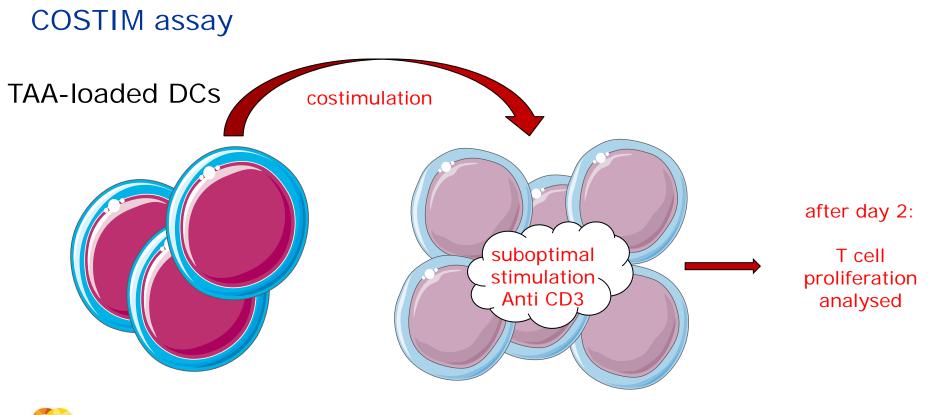
Mode of action

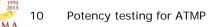
- 1. presentation of tumour-associated antigen to lymphocytes
- 2. activation and induction of proliferation of CD8⁺ and CD4⁺ T cells
- 3. potent and specific anti-tumour response

Surrogate markers of DC maturation and potency.

Parameter	Method	Acceptance criteria
Viability	Trypan blue exclusion	> 80%
Phenotype	Flow cytometry	CD11c ⁺ /MHC-II ⁺ > 95% CD80 ⁺ > 60%
Phenotype additional markers	Flow cytometry	e.g. CD54, CD69, CD83, CD86

Insufficient: no <u>functional</u> assay

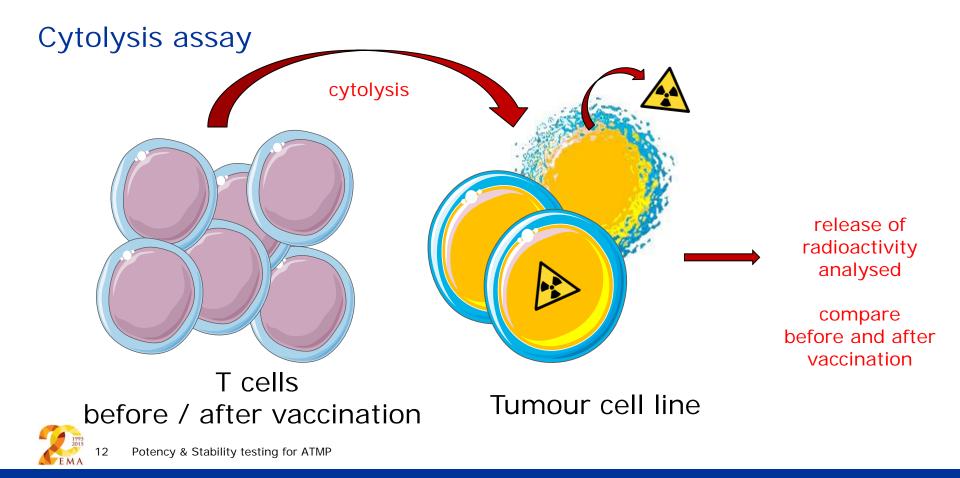

Additional potency assays


COSTIM bioassay: Proliferation of T-cells, after DC stimulation

Cytolysis assay: Using patient serum (T-cells) and a tumour cell line

CD3⁺ T cells

Relevance of COSTIM assay


COSTIM: useful assay to test the co-stimulation capacity of TAA-presenting DCs. Justify Biological relevance: T-cell proliferation not directly correlated with specific antigens presented.

Using one common T cell batch to monitor proliferative response is considered a MLR, mainly depending on mismatch between T cells and DCs. Compare to co-culture with autologous T cells.

Functional assays during clinical trials should use autologous T cells (or PBMCs). Only autologous cells will give correct information on patient-specific potency of product.

Cytolysis assay

- Co-culture of patient's T-cells (before / after treatment) with tumour cell lines can show that treatment leads to T cells able to attack tumour cells.
- No release test.
- *In vitro* prior to immunisation not feasible
- Ideal = simulation of proposed MoA and biological effect

DC Potency Summary

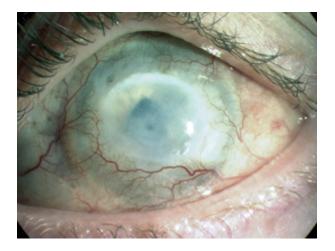
- Validated functional assay required (e.g. COSTIM assay)
- DC viability and phenotype not sufficient
- Justification for chosen markers and controls required (include monitoring these markers prior to stimulation)
- During characterisation / clinical studies use assay to demonstrate functionality
- Effect on other immune cells (as part of characterisation)

Further considerations / recommendations

- Preferably Quantitative assays
- Evaluate relation potency-efficacy
- Consider if Reference Standard (TAA-Loaded DCs) is feasible
- Does testing before cryopreservation ensure potency after thawing & washing?
- Does storage impact on other aspects: FACS analysis, viability, T-cell stimulation, etc. ?
- Include cells from patients in assay validation; disease may impact on e.g. patient's T-cell population.

Specific potency assay comments: autologous cells

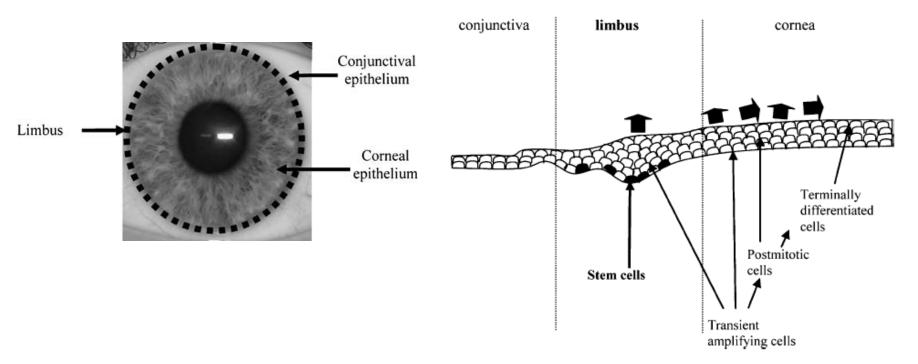
- Few cells available for potency assay (requires usually more cells than other release tests, especially bioassay)
- Aspecific stimulation (e.g. proliferation assay)
 - No determination of antigen-specific cell number / function
 - HLA type differences can hamper bioassay development
 - MLR used as bioassay (proliferative capacity based on HLA differences, only possible when used to analyse an effect with correct control: e.g. before/after vaccination, DCs without / with stimulation, etc.)
- Difficulties with correct reference standard due to e.g. donor variability
- Wide range for specifications due to e.g. donor variability



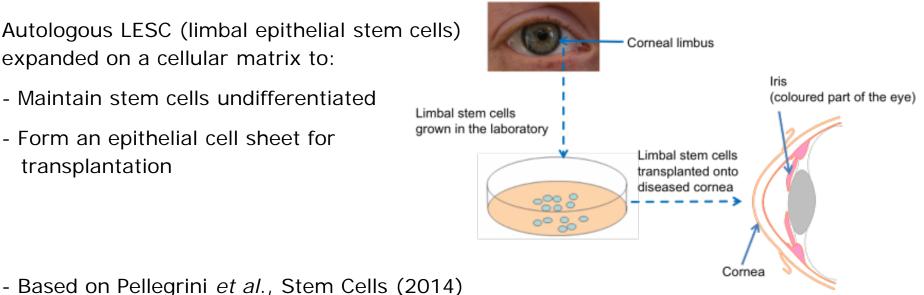
Casus 2: Tissue engineered Product: Autologous Limbal Epithelial stem cells

Loss of corneal stem cells (injury/disease)

 \rightarrow no cornea repair and overgrowing of conjunctival epithelium


 \rightarrow vision loss

Background information limbal stem cells


Notara et al., Cell Tissue Res, vol. 331, pp. 135-143

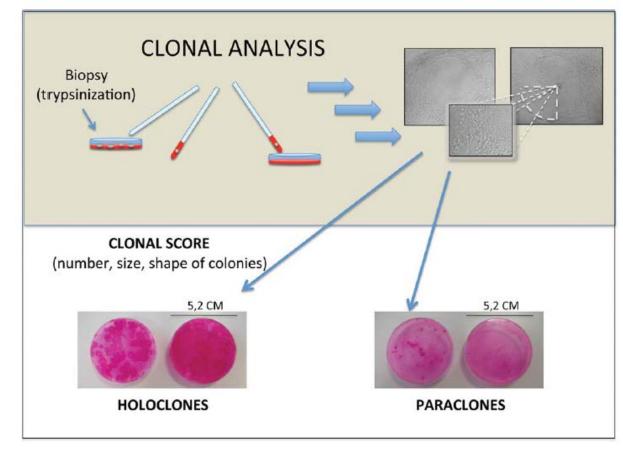
Background information

Autologous LESC (limbal epithelial stem cells) expanded on a cellular matrix to:

- Maintain stem cells undifferentiated
- Form an epithelial cell sheet for transplantation

Characteristics

- Identity and purity
 - Small cuboidal cells with high nucleus-cytoplasm ratio
 - Undifferentiated stem cells after expansion (transient amplifying)
 - Phenotypic markers comparable to *in vivo* cells
- Potency (based on *in vivo* mechanism of action)
 - Potential of proliferation with self renewal and differentiation
 - 3 types of clonogenic keratinocytes: holoclones, meroclones, and paraclones
 - Stem cells: holoclone-forming cells



Potency Assay (1)

- Number of clonogenic cells, colony size & cell growth rate are conditions necessary but
- **not sufficient** to predict performance of the graft.

From Pelegrini *et al.*, Stem Cells (2014)

Pellegrini et al., Stem Cells, vol. 32, pp. 26-34

Potency assay (2)

Clinical data: most important biological criterion for graft quality (likelihood successful outcome) is evaluation of number of stem cells detected as **p63 bright** holoclones in the culture.

Release testing:

- Viability
- Cell number
- Colony-forming efficiency
- % p63 bright cells
- % K3+ cells

Rama *et al.*, N Engl J Med, vol. 363, pp. 147-155 Pellegrini *et al.*, Stem Cells, vol. 32, pp. 26-34

Casus 3: Gene therapy product: Eyelight

Lentiviral vector

hERP = *human Eye Repair Protein gene*

Mode of action

- 1. transfection of human retinal cells with LV
- 2. ERP gene transcription and translation \rightarrow functional protein
- 3. protein deficiency solved to stop progressive eye disease

Eyelight Gene therapy: potency testing

- Infectious titre
- Transfection efficiency of target cells (or representative cells)
- ERP gene expression & functionality in target cells
- Functionality \rightarrow can be difficult to model, but at least show that:
 - surrogate marker for function is linked to *in vivo* function (scientific rationale)
 - cell type in bioassay is representative for *in vivo* target cell
 - assay conditions represent *in vivo* transduction
- Include reference batch

Gene therapy: stability protocol

- Appearance
- pH
- Genomic titre
- Infectious titre
- In vitro potency (cellular infectivity, protein expression & functionality)
- SDS-PAGE (purity)

Further ATMP potency testing issues (1)

- Assay qualitative instead of quantitative
- MoA unknown (consequence: e.g. no surrogate markers available)
- Sometimes *in vitro* assay does not correlate with *in vivo* situation
 - Assay conditions are insufficient (e.g. presence of immune suppressiva in vivo)
 - Surrogate markers etc. are not appropriate read-out for biological activity
- Reference standard difficult to obtain
- Not up-to-date with most recent scientific knowledge

Further ATMP potency testing issues (2)

- Assay does not reflect all relevant biological properties (e.g. T cell suppression by MSCs → no analysis of effect on other cell types or analysis of self-renewing capacity of MSCs)
- Assay is not specific enough
 - Effect may also be caused by impurities
 - Not clear which cells produce the factor (e.g. ELISA versus flow cytometry)

Guidelines & Further Reading

- ICH Q6B Note For Guidance on Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products. (CPMP/ICH/365/96)
- EMEA/CHMP guideline on potency testing of cell-based immunotherapy medicinal products for the treatment of cancer (CHMP/BWP/271475/06)
- EMEA/CHMP guideline on human cell-based medicinal products (EMEA/CHMP/410869/2006)
- ICH Considerations Oncolytic Viruses (EMEA/CHMP/ICH/607698/2008)
- Bravery *et al.* (2013) Cytotherapy 15, 9–19 (Gives examples!)
- Guthrie *et al.* (2013) Trends in Biotechnology, Vol. 31, 505-514

