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Endpoints are often measured
differently in trial and real-world
settings.

This limits the use of real-world data
(RWD) to construct comparators for
single-arm trials.

Especially challenging when considering time-to-event outcomes,
like progression-free survival (PFS) in oncology.



Bias from measurement error in RWD may be due to how
and when patients are assessed for disease progression
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Simulation studies allow us to quantify bias and evaluate
mitigation approaches
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Ackerman, B., Gan, R. W., Meyer, C. S., Wang, J. R., Zhang, Y., Hayden, J., et al. (2024). Measurement error and
bias in real-world oncology endpoints when constructing external control arms. Frontiers in Drug Safety and
Regulation.



Simulation example: misclassified progression events in
Newly Diagnosed Multiple Myeloma RWD can bias median PFS
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Simulation design: N = 365 patients with true mPFS = 34.2 months; false positive rate = 20%, false negative
rate = 50%, ‘irregular’ cadence is every 28 days with higher variability than trial protocol. Error bars indicate
middle 95% of point estimates under measurement error scenario, across 1,000 simulations.



Newly developed methods may mitigate endpoint

measurement error bias in RWD comparators
Survival Regression Calibration (SRC)
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*Validation sample is a study where both the 'true' (trial-like) and . . . . .
'mismeasured' (real-world) outcomes are collected, on a subset of the ECA Slmulat{?n qes,gn_- N = ,365 patients W,ﬂ? true mPFES = 34.2 |
RWD (internal) or a separate set of patients altogether (external) to be months; ‘mis-measured’ outcome had bias in shape/scale Weibull

used for outcome measurement error modeling parameters up to +/- 0.3; 40% (N ~ 150) patients sample for
: internal validation sample; 1,000 simulated datasets

Ackerman, B., Gan, R.R., Zhang, Y., Siddique, J., Roose, J., Lund, J.L., et al. (2025).
“Regression calibration for time-to-event-outcomes: Mitigating bias due to measurement error in
real-world endpoints.” Epidemiologic Methods.



Applying SRC as Quantitative Bias Analysis (QBA)

Contextualizing measurement error bias when we can’t directly account for it
(e.g. no validation samples)

Problem: Validation sample may not be available to estimate bias

correction factors needed to apply SRC

QBA approach: Set plausible ranges for bias parameters based on
expert knowledge, leverage simulations, or conduct tipping point

analyses

Result: More robust evidence generation that considers measurement
differences between trial and real-world settings
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bias analyses to address measurement error in time-to-event endpoints.” Under Review.



It is often infeasible in ECA analyses to construct RWD
comparators with endpoints aligned to trial standards, but:

Simulation studies can demonstrate when no bias is present due to
measurement misalignments.

Methods can be applied to quantify and reduce statistically meaningful
measurement error bias.

Quantitative Bias Analyses can contextualize biased ECA findings when
measurement error bias is not directly estimable.

Robust statistical methods can adequately align RWD endpoints towards
trial standards and reduce biases for regulatory approval of ECAs.
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