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Endpoints are often measured 
differently in trial and real-world 
settings.

This limits the use of real-world data 
(RWD) to construct comparators for 
single-arm trials. 
Especially challenging when considering time-to-event outcomes, 
like progression-free survival (PFS) in oncology.



Bias from measurement error in RWD may be due to how 
and when patients are assessed for disease progression
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Describe Simulate Quantify Mitigate

Simulation studies allow us to quantify bias and evaluate 
mitigation approaches

Ackerman, B., Gan, R. W., Meyer, C. S., Wang, J. R., Zhang, Y., Hayden, J., et al. (2024). Measurement error and 
bias in real-world oncology endpoints when constructing external control arms. Frontiers in Drug Safety and 
Regulation. 
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Simulation example: misclassified progression events in 
Newly Diagnosed Multiple Myeloma RWD can bias median PFS

1. Irregular cadence alone
has minimal impact on
median PFS (mPFS) bias.

2. False positives and false
negatives, individually, can
have a large impact on
mPFS bias.

3. False positives and
negatives together
generate strong opposing
bias that may downplay
the impact of each error.

4. Irregular cadences and
misclassified events
together can generate
bias greater than from
each individually. Simulation design: N = 365 patients with true mPFS = 34.2 months; false positive rate = 20%, false negative 

rate = 50%, ‘irregular’ cadence is every 28 days with higher variability than trial protocol. Error bars indicate 
middle 95% of point estimates under measurement error scenario, across 1,000 simulations. 
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Newly developed methods may mitigate endpoint 
measurement error bias in RWD comparators

1. Get initial estimate of mPFS from parametric
Weibull survival model in RWD study

2. Calculate bias of model parameters (‘scale’
& ‘shape’) as difference between ‘true’ (trial-
like) and ‘mismeasured’ (real-world) models in
validation sample*

3. Update estimate of mPFS by calibrating
model parameters according to bias factors

Survival Regression Calibration (SRC)

Ackerman, B., Gan, R.R., Zhang, Y., Siddique, J., Roose, J., Lund, J.L., et al. (2025). 
“Regression calibration for time-to-event-outcomes: Mitigating bias due to measurement error in 
real-world endpoints.” Epidemiologic Methods.

Simulation design: N = 365 patients with true mPFS = 34.2 
months; ‘mis-measured’ outcome had bias in shape/scale Weibull 
parameters up to +/- 0.3; 40% (N ~ 150) patients sample for 
internal validation sample; 1,000 simulated datasets

*Validation sample is a study where both the 'true' (trial-like) and
'mismeasured' (real-world) outcomes are collected, on a subset of the ECA
RWD (internal) or a separate set of patients altogether (external) to be
used for outcome measurement error modeling.



Applying SRC as Quantitative Bias Analysis (QBA)
Contextualizing measurement error bias when we can’t directly account for it 
(e.g. no validation samples)

Problem: Validation sample may not be available to estimate bias 
correction factors needed to apply SRC

QBA approach: Set plausible ranges for bias parameters based on 
expert knowledge, leverage simulations, or conduct tipping point 
analyses

Result: More robust evidence generation that considers measurement 
differences between trial and real-world settings

Example: distribution of bias 
parameters via simulation can 

be used to calibrate rwPFS 
curve with SRC methodology

Ackerman, B., Gan, R.W., Meyer, C.S., Zhang, Y., Wang, J.R., Hayden, J., et al. (2025). “Quantitative 
bias analyses to address measurement error in time-to-event endpoints.” Under Review.
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It is often infeasible in ECA analyses to construct RWD 
comparators with endpoints aligned to trial standards, but:

Robust statistical methods can adequately align RWD endpoints towards 
trial standards and reduce biases for regulatory approval of ECAs.

Methods can be applied to quantify and reduce statistically meaningful 
measurement error bias.

Simulation studies can demonstrate when no bias is present due to 
measurement misalignments.

Quantitative Bias Analyses can contextualize biased ECA findings when 
measurement error bias is not directly estimable.
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