

Regulatory perspective on qualification of methodologies based on Digital Health Technologies and Artificial Intelligence/Machine Learning

Joerg Zinserling
Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)
[Federal Institute for Drugs and Medical Devices]

EMA workshop on qualification of novel methodologies

Topics

- 1. Intention of presentation
- 2. EMA remit in qualifications for DHT/AI Validation Strategy
- 3. Clinical validation and technical validation
- 4. Digital Health Technology aspects
- 5. Artificial Intelligence/Machine Learning aspects
- 6. Lifecycle management

1. Intention

Intention

Provide (selected) observations from recent qualification procedures

- Highlighting topics
- Not intended to be comprehensive

Provide preliminary proposals

- Not necessarily final
- Should enable discussion

Focus on

- Digital Health Technology
- Artificial Intelligence/Machine Learning tools

2. Observations and preliminary proposals:

EMA remit in qualifications for DHT/AI

Focus of qualification procedures

- Context of Use should be relevant for medicinal product lifecycle
 - Development in Phase 1, 2, 3
 - Evaluation at MAA
 - Monitoring after approval
- Digital endpoint examples
 - Digital biomarker
 - Electronic Clinical Outcome Assessment
 - Digital (objective) measures...

Focus on components in EMA remit

- Separate technical validation from clinical validation
- Context of Use should focus on specific application

EMA/SAWP intends to broaden expert range in assessment

Clinical experts, patients, methodologists, Real World Data experts, GCP experts, Notified Bodies, HTA bodies...

EMA remit in qualifications for DHT/AI

Please see also

1 June 2020 EMA/219860/2020 Human Medicines Division

Status as of June 2020

Questions and answers: Qualification of digital technology-based methodologies to support approval of medicinal products

Clinical validation and technical validation

Technical validation

- Not all parts may be in EMA remit
- Provide high level information on CE marked medical devices
 - Usually performance data are needed
- Check if CE mark and intended use covers application

Clinical validation

- Separate clinical validation from technical validation
 - Separate questions to EMA
 - Structure discussion by technical/clinical aspects

Context of Use should focus on specific application

- Usually performance data in target population are needed
 - Performance in patients could differ from healthy volunteers

Digital Health Technology aspects

Clinical performance evaluation

- Relate performance evaluation to (specific) Context of Use and application
 - Testing in clinical trial setting may be needed
 - Will depend on importance/risks (primary endpoint vs. exploratory endpoint)
- Tailor performance metrics and variables to Context of Use
- Consider if reference standard is available

Considerations on devices

- Ideally application of DHT should be device agnostic
- Consider defining minimum requirements for technical performance
- Publication of minimum requirements not sufficiently addressed so far
- Use of layer model may be helpful (raw data → processing → derived device data → clinical endpoint data)

Performance of devices or software that do not require a CE mark

- Define criteria to ensure performance
- Define limits for performance criteria

Artificial Intelligence/Machine Learning aspects

Clinical performance evaluation

- Consider secular trends for performance evaluation
- Interpretability and explainability may be paramount in regulatory use
- Envisage prospective validation for AI tools
 - Usually required
- Consider pre-qualification collaboration
 - Generalisability of single Sponsor developments may be questioned

Model deployment

- Cover model deployment in plan
- Consider performance checks
 - Before and after application
- Cover model degradation
 - Technical aspects evolve quickly

Artificial Intelligence/Machine Learning aspects

Draft reflection paper is coming soon

work.

Thank You everyone
for your contributions to create the

N.B. TITLE PAGE to be DETERMINED.

This follows now the general structure of EMA Scientific Committees' reflection papers

- 1 [DATE]
- 2 EMA/83833/2023 draft 6
- 3 <TBD/TBC (CHMP/CVMP)>
- 4 Reflection paper on the use of Artificial Intelligence (AI) in
- 5 the medicinal product lifecycle
- 6 Draft¹

Lifecycle management

Lifecycle management of the DHT / AI model

- Consider quality control process
- Consider performance checks
- Consider how variations or updates of the technology could be addressed
- Consider online material
 - Static landing page
 - Repository

Lifecycle management of the Qualification Opinion

- Qualification opinion can likely cover only a specific version/timepoint/stage
- Currently not sufficiently addressed

Thank you very much for your attention!

Contact

Federal Institute for Drugs and Medical Devices Biostatistics and Special Pharmacokinetics Unit, Research Division Kurt-Georg-Kiesinger-Allee 3 D-53175 Bonn

Contact person
Dr. Joerg Zinserling
joerg.zinserling@bfarm.de
www.bfarm.de
Phone +49 (0)228 99 307-4203

