BOS 4

Rob Hemmings preliminary comments

- Longitudinal model as primary
 - What is of primary relevance?
 - $A \neq B$, or A = B
 - Time to event
 - Incidence
 - Statistical vs Clinical relevance
- High impact
 - $-\neq$ controversy, but on reg decision

- Basic questions:
 - Why model? ↓ patient numbers (feasibility) what level of 'risk' for the decision is acceptable for this benefit.
 - Where has model come from?
 - Is Type I error controlled?
 - In what ways can I make a bad decision? What bias toward demonstrating equivalence?
 - same assumption on time dependency for each treatment group
 - Otherwise different parameters ok

- Basic questions:
 - Will estimates differ to data observed?
 - Point estimates
 - Variability / confidence intervals
 - Why and how $(\downarrow var)$?
 - gains in efficiency must necessarily come from models which have built-in constraints on evolution of the response over time. Are the constraints appropriate? Why?
 - Sources of bias?
 - Handling patient withdrawals? 'Treat as failures' in 'standard' analysis. How handled by Markov? Can we assess influence of withdrawals?

- Assumptions
 - Only mathematical assumptions listed?
 - How are candidate models formed?
 - Missing data assumptions?
 - Assumptions from literature?
 - Mixture of settings / patients is same model appropriate for all types of patient (based on disease, demog and response?)
 - Applicability to current trial?
 - Markov model response depends only on response at previous timepoint?
 - ? AEs and w/d from treatment how should data from that patient contribute?
 - Equivalence limit same stat vs clinical considerations.

- Questions \rightarrow dialogue
- What if model and observed data inconsistent because of non-completers?
- "A single model incorporating further assumptions has increased risk of bias and poor performance due to model misspecification."
 - Analysis of incidence makes fewer assumptions (depending how you define the question)
- Pre-spec ok
- Sensitivity analyses simulations of differences how would they be exhibited?

- Is it acceptable?
 - Discussion as above
 - Reg position is understandable from an assessment p.o.v.
 - Was level of detail / dialogue adequate?
 - Intuitively easier to accept for biosimilar: comparability exercise, not establishing efficacy / safety
 - If so, door open to line extensions, difficult to study areas
- If not, what to do?
 - Type I error control by simulation little experience, but little else to do (simulate extreme scenarios, plan for extreme results)
 - Qualification procedure!
 - Model vs Observed incidence

Sample size for safety!

Holford, Karlsson, Mixed Effect Models for Trials Disease Modifying Treatments

- Need for model clear
 - Parkinson / Alzheimer GL 'slope analysis'
- Basic questions:
 - How model constructed?
 - Applicability / Comprehensiveness of available epidemiology?
 - Does treatment change underlying profile of disease timecourse?
 - Impact of AEs? Any patients contributing to benefit who withdraw?
 - How does model partition effects into S and DM?

Holford, Karlsson, Mixed Effect Models for Trials Disease Modifying Treatments

- Basic questions:
 - What data available? Why limited duration (feasibility, withdrawals – AE, trt switch?)
 - Simulations how much extrapolation?
 - In what ways can I make a bad decision?
 - Handling patient withdrawals?
 - Type I error, Pre-spec ok

Holford, Karlsson, Mixed Effect Models for Trials Disease Modifying Treatments

- Extrapolation is uncertainty adequately reflected from
 - Parameter estimates
 - Disease model
- Other information on disease progression
 - biomarkers, scans? Developing field "effect on underlying pathological process should be established"
 - Multivariate model?

Both examples

- Communication
 - Stats / PK / PM \rightarrow Stats / PK / PM
 - Stats / PK / PM \rightarrow Clin
 - $-\operatorname{Clin}\to\operatorname{Clin}$