

A Common Data Model- Why? Strengths and limitations of a common data approach

Patrick Ryan, PhD Janssen Research and Development Columbia University Medical Center

Odyssey (*noun*): \oh-d-si\

1. A long journey full of adventures

The journey to real-world evidence

Patient-level data in source system/schema

Different types of observational data:

- Populations
 - Pediatric vs. elderly
 - Socioeconomic disparities
- Care setting
 - Inpatient vs. outpatient
 - Primary vs. secondary care
- Data capture process
 - Administrative claims
 - Electronic health records
 - Clinical registries
- Health system
 - Insured vs. uninsured
 - Country policies

One-time Repeated

Patient-level

data in source

system/schema

Types of evidence desired:

- Cohort identification
 - Clinical trial feasibility and recruitment
- Clinical characterization
 - Treatment utilization
 - Disease natural history
 - Quality improvement

Population-level effect estimation

- Safety surveillance
- Comparative effectiveness
- Patient-level prediction
 - Precision medicine
 - Disease interception

Patient-level data in source system/schema

Opportunities for standardization in the evidence generation journey

- **Data structure** : tables, fields, data types
 - **Data conventions** : set of rules that govern how data are represented
 - Data vocabularies : terminologies to codify clinical domains
- **Cohort definition** : algorithms for identifying the set of patients who meet a collection of criteria for a given interval of time
- **Covariate construction** : logic to define variables available for use in statistical analysis
- Analysis : collection of decisions and procedures required to produce aggregate summary statistics from patient-level data
- **Results reporting** : series of aggregate summary statistics presented in tabular and graphical form

Desired attributes for reliable evidence

Desired attribute	Question	Researcher	Data	Analysis		Result
Repeatable	Identical	Identical	Identical	Identical	=	Identical
Reproducible	Identical	Different	Identical	Identical	=	Identical
-		0				
Replicable	Identical	Same or different	Similar	Identical	=	Similar
Generalizable	Identical	Same or different	Different	Identical	=	Similar
Robust	Identical	Same or different	Same or different	Different	=	Similar
Calibrated	Similar (controls)	Identical	Identical	Identical	=	Statistically consistent

Minimum requirements to achieve reproducibility

Desired attribute	Question	Researcher	Data	Analysis		Result
Reproducible	Identical	Different	Identical	Identical	=	Identical

- Complete documented specification that fully describes all data manipulations and statistical procedures
- Original source data, no staged intermediaries
- Full analysis code that executes end-to-end (from source to results) without manual intervention

How a common data model + common analytics can support reproducibility

Desired attribute	Question	Researcher	Data	Analysis		Result
Reproducible	Identical	Different	Identical	Identical	=	Identical

- Use of common data model splits the journey into two segments: 1) data standardization, 2) analysis execution
- ETL specification and source code can be developed and evaluated separately from analysis design
- CDM creates opportunity for re-use of data step and analysis step

Challenges to achieve replication

Desired attribute	Question	Researcher	Data	Analysis		Result
Replicable	Identical	Same or different	Similar	Identical	=	Similar
Source 1	B					Similar evidence Reliable

Source n

...

If analysis procedure is not identical across sources, how do you determine if any differences observed are due to data vs. analysis?

How a common data model + common analytics can support replication

How a common data model + common analytics can support robustness

One-time Repe

How a common data model + common analytics can support calibration

Desired attribute	Question	Researcher	Data	Analysis		Result
Calibrated	Similar (controls)	Identical	Identical	Identical	=	Statistically consistent

 With a defined reproducible process, you can measure a system's performance and learn how to properly interpret the system's outputs

Flavors of validation throughout the evidence generation journey

Validation: "the action of checking or proving the accuracy of something"

Types of 'validation' required: Data validation, software validation (ETL)

Structuring the journey from a common data model to evidence

Types of 'validation' required:

Software validation (analytics), Clinical validation, Statistical validation

Motivations for developing different common data models

	Collaboration type	Data type(s)	Analytic use cases			
I2b2	Grant -> Open- source project	EHR, 'omics cohorts	Cohort identificationTranslational research			
Sentinel	Contract	US private-payer claims	Clinical characterizationSafety surveillance			
PCORNet	Grant	US EHR	Cohort identificationComparative effectiveness			
EU-ADR (Jerboa)	Grant	European EHR, claims	Clinical characterizationSafety surveillance			
OHDSI (OMOP)	Open-science community	International claims, EHR, hospital, registries	 Cohort identification Clinical characterization Population-level estimation (safety + effectiveness) Patient-level prediction 			

Balancing tradeoffs in data management vs analysis complexity

Concluding thoughts

- On the journey from source data to reliable evidence, think about where you are starting and where you want to end up
- Common data model + common analytics can help standardize parts of the journey
- The decision of whether (and which) CDM to apply to a EU network should be driven by the requirements around the reliability of the evidence and the efficiency of the evidence generation process

Join the journey!

ryan@ohdsi.org