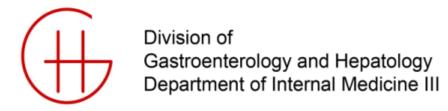


EMA stakeholder interaction on the development of medicinal products for chronic non-infectious liver diseases (PBC, PSC, NASH)


Session 2: Primary Sclerosing Cholangitis (PSC)

Potential trial design and suitable study populations

Michael Trauner

Div. of Gastroenterology & Hepatology Dept. of Internal Medicine III, MedUni Wien

Financial Disclosures

Advisor

- Albireo, Falk, Genfit, Gilead, Intercept, MSD, Novartis, Phenex, Regulus

Grants / research support

- Albireo, Cymabay, Falk Pharma, Gilead, Intercept, MSD, Takeda

Speakers bureau

- Falk Foundation, Gilead, MSD, Roche

Travel grants

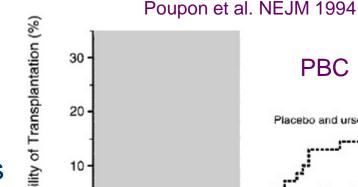
Falk Foundation, Gilead, Roche

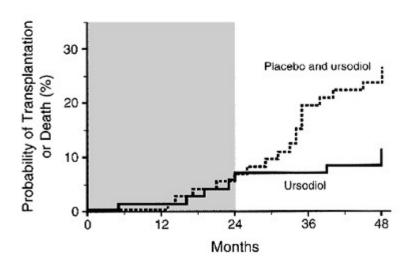
Property rights

 The Medical University of Graz has filed patents on medical use of norUDCA and I am listed as co-inventor

Challenges in Clinical Trial Design for PSC

- Choosing the right endpoint ... (Cyriel Ponsioen)
- Rare disease number of patients for studies limited
- Disease heterogeneity different prognostic & clinical implications
- Long, variable & undulating disease course
 - Limits study design (e.g., no lead-in phase followed by (re-)randomisation)
 - Slow progression (annual event rate 3-4%) long study duration
- Variable confounding therapies (e.g. UDCA, IBD therapies, ABx)
 - UDCA (even if ineffective?) will impact on ALP-based recruitment
 - Exclusion of active IBD (to avoid IBD therapy bias / safety issues) may obscure potential efficacy signal (and does not reflect unmet clinical need)
- Multiple competing endpoints ('liver' vs 'bile duct' vs 'colon')


Clinical Trial Design for


Phase 2

- Safety, proof of concept (exploratory efficacy endpoints)
- Dose finding for phase 3; UDCA weaning for clear(er) s
- Endpoints may depend on drug mechanism (cholestasi
- Overlap with AIH, small duct may be allowed (cave: mil-

Phase 3

- Intermediate endpoints for marketing authorisation mus
- Combined use of histology evaluation and ALP changes represent an acceptable intermediate endpoint (co-prim
- Clinical outcomes: composite endpoint, totality of data?
- 2 years for the interim endpoints, up to 5 years for the demonstration of long-term clinical outcomes
- Open label or placebo extension?

Months

12

PBC

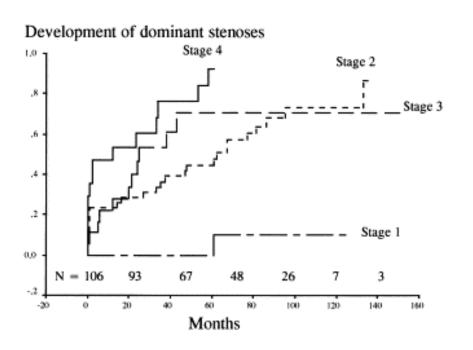
Placebo and ursodio

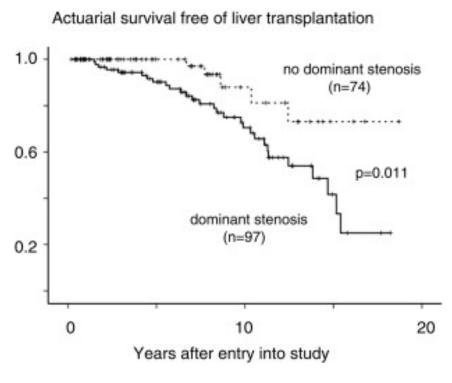
Suitable Study Populations for PSC Trials

- Rare disease practically all comers
 - Large duct PSC with/without IBD
 - Some phase II also allow small duct PSC, overlap with AIH
 - Exclude Child-Pugh B(>9)/C, need for (repeated) endoscopic Rx of DS, ...
- ALP entry criterium (also for future studies?)
 - Impact of UDCA on study recruitment
- Stratification for UDCA use; IgG4?
 - Feasibility of further sub-stratification?
 - UDCA naive patients shorter disease duration (~less advanced disease)?
- 'Enrichement' for risk of fibrosis progression and reaching clinical endpoints sufficiently considered?
 - Counterintuitive to early treatment of fibro-obliterative disease?

Clinical Heterogeneity of PSC – Currently Excluded Patient Subgroups (Phase III Studies)

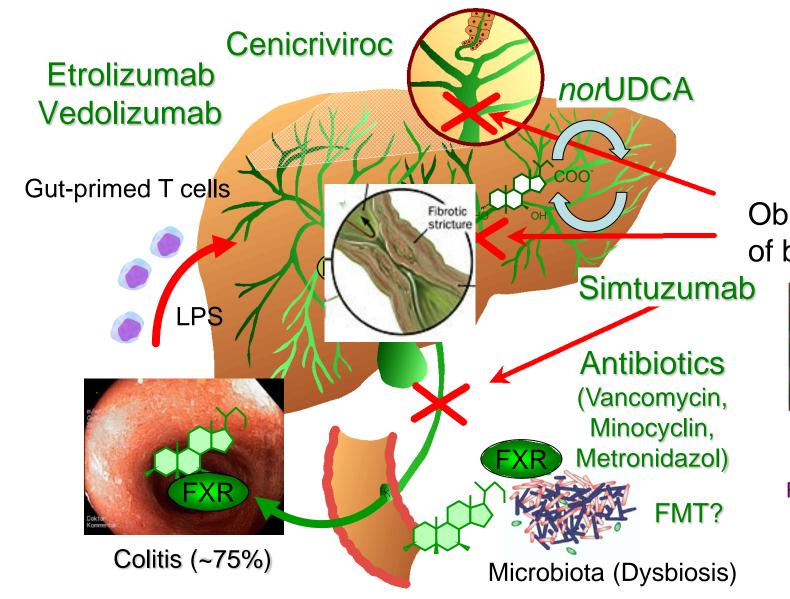
Too 'benign' / early disease

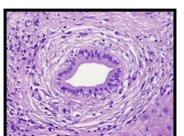

- Small duct PSC
- Overlap with AIH
- Early PSC changes on MR imaging with normal ALP ('Norway experience')


Too 'severe' / late disease

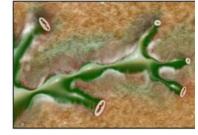
- Dominant strictures requiring endoscopic treatment
- Recurrent cholangitis
- Decompensated cirrhosis
- (Active IBD)

Advanced Fibrosis – Dominant Bile Duct Stenosis Dilemma in PSC?



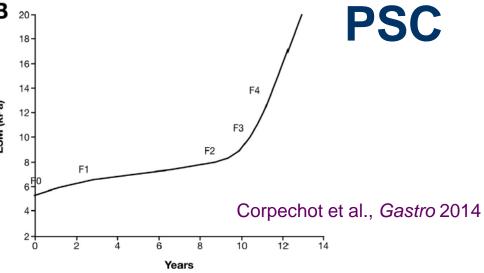


Stiehl et. al., *J Hepatol* 2002; 36: 151 Rudolph et al., *J Hepatol* 2009;51:149 Gotthardt et al., *GI Endosc* 2010; 71: 527


Novel Therapeutic Strategies in PSC Currently Tested in Clinical Trials – Which Level of Action?

Small Duct PSC

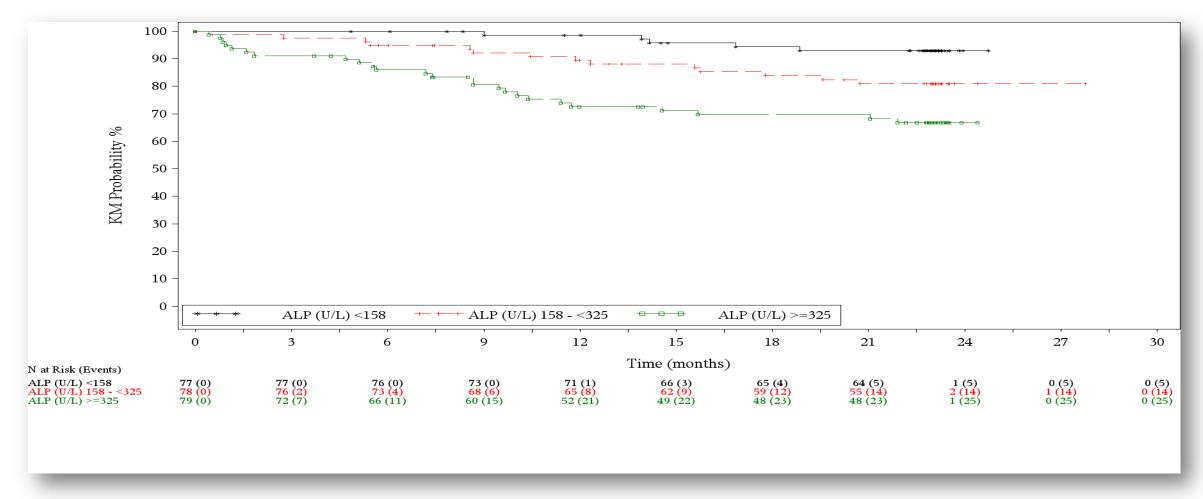
Obliterative fibrosis of bile ducts

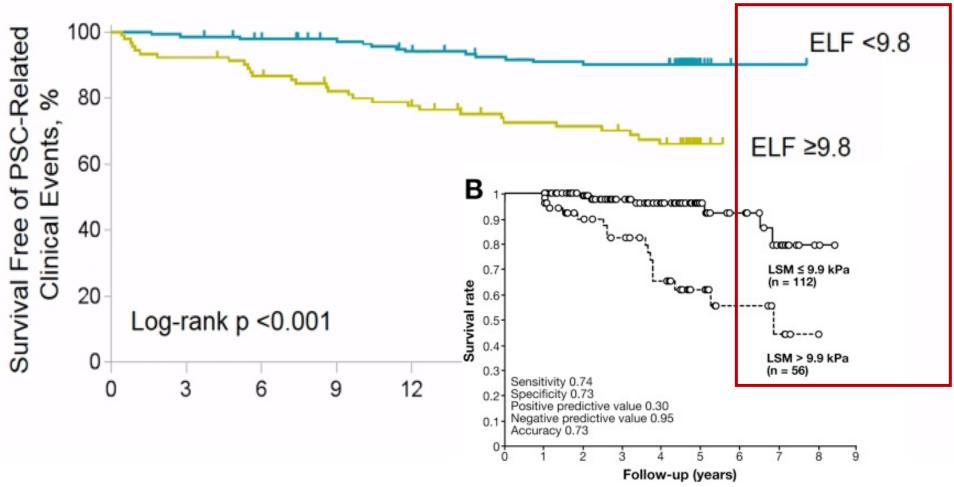

Large Duct PSC

www.mayoclinic.org

Reviews: Hirschfield et al., Lancet 2013 Halilbasic et al., Dig Dis 2015 Ali et al., Intract Rare Dis Res 2015 Karlsen et al., J Hepatol 2017

Further Patient Selection / Risk


- NASH as role model?
 - Caveat: NASH = epidemic (restricting treatment
- Fibrosis stage progression, reversal
 - NIT (e.g. ELF), VCTE, histology


- Compensated cirrhosis F4 reversal, clinical decomp., (HVPG?)
 - Composite endpoint including the manifestation (histological dg.) of cirrhosis,
 MELD score above 14, decompensation events (such as encephalopathy,
 variceal bleeding, ascites, SBP), as well as liver transplantation and death
 - Bile duct related endpoints: cholangitis, need for interventions (subjective!)
 - Malignancy: CCC, HCC, CRC
- ALP baseline levels (naïve vs. UDCA)
- Symptom severity

Survival Free of PSC-Related Events According to Tertiles of Serum ALP at Baseline

Survival Free of PSC-Related Events According to ELF and LSM at Baseline

Bowlus C et al. ILC 2017 Corpechot et al., Gastro 2014; 146: 970-9

		PLACEBO (N=40)	NU 500mg (N=39)	NU 1000mg (N=41)	NU 1500mg (N=39)
ALP at baseline (U/L)	Mean (SD)	456 (234.4)	495 (282.4)	369 (200.6)	464 (241.6)

Fickert et al., J Hepatol 2017

Spontaneous enrichement?

	Placebo n = 25	OCA 1.5-3 mg n = 25	OCA 5-10 mg n = 26
Current UDCA use, n (%)	12 (48)	12 (48)	12 (46)
ALP, U/L	562.8 (300.2)	422.5 (123.1)	428.5 (178.2)

Kowdley et al., AASLD 2017

	SIM 125 mg n=77	SIM 75 mg n=79	Placebo n=78
UDCA therapy, n (%)	50 (65)	42 (53)	52 (67)
ALP, U/L	271 (151, 474)	273 (134, 392)	237 (119, 336)
Ishak F3-F6, n (%)	44 (57)	40 (51)	35 (45)

Muir et al., Hepatology 2018

Trauner et al., AASLD 2018

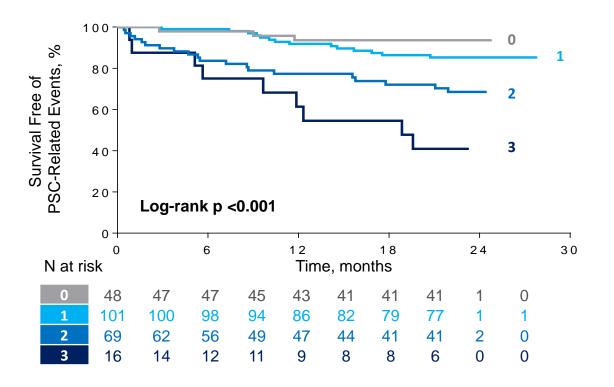
	GS-9674 100 mg n=22	GS-9674 30 mg n=20	Placebo n=10
UDCA therapy	10 (46)	9 (45)	5 (50)
ALP, U/L	350 (312, 387)	344 (271, 460)	380 (265, 547)
ELF	9.26 (8.73, 9.66)	9.77 (9.26, 10.31)	9.09 (8.87, 9.60)
Liver stiffness, kPa	7.3 (6.2, 10.6)	10.1 (6.9, 12.5)	9.8 (7.9, 10.1)

Hirschfield et al., J Hepatol 2018

	Placebo (n=20)	NGM282 1.0 mg (n=21)	NGM282 3.0 mg (n=21)
ALP, U/L	356 (138)	383 (181)	354 (194)
ELF score	10.1 (1.4)	10.4 (1.2)	9.7 (1.2)

Lessons from Simtuzumab Trial - The Natural History of PSC?

2yr Outcome	Total (N=234)
Worsening of fibrosis (Ishak)	37%
No change	34%
≥ 1 stage improvement	29%
≥ 2 stage improvement	9%
PSC related clinical events	20%
- ascending cholangitis	13%
- ascites	3%
- cholangio carcinoma	1%
New onset of UC	0.4%


Risk factors for events:

- Advanced fibrosis
- ➤ High ALP
- > High ELF

Prognostic Utility of the MRCP-RS

PSC-Related Events

MRCP-RS	PSC-Related Events (n=47)	HR (95% CI)
0	6% (3/48)	Ref
1	14% (14/101)	2.28 (0.65, 7.92)
2	30% (21/69)	6.05 (1.80, 20.30)
3	56% (9/16)	12.46 (3.37, 46.10)

- c-statistic of MRCP-RS for PSC-related clinical events, 0.71 (95% CI 0.63, 0.79)
- MRCP-RS associated with clinical events (HR 2.09; 95% CI 1.44, 3.04) after adjustment for serum ALP (HR 1.001; 95% CI 1.000, 1.002; p=0.006) and ELF (HR 1.14; 95% CI 0.90, 1.45; p=0.28)

Prognostic Models

Mayo Clinic Model	King's College Model	Multicenter Model	Revised Mayo Model	Amsterdam- Oxford Model	PREsTo
		Predictors of Survi	val		
Age	Age	Age	Age	Age	Age
Bilirubin	Hepatomegaly	Bilirubin	Bilirubin	Bilirubin	Bilirubin
Histologic stage	Histologic stage	Histologic stage	Albumin	Albumin	Albumin
Hgb	Splenomegaly	Splenomegaly	AST	AST	AST
IBD	Alkaline phosphatase		Variceal bleeding	Alkaline phosphatase	Alkaline phosphatase
				Platelets	Platelets
				PSC subtype	Duration of PSC
					Sodium
					Hemoglobin

Slide courtesy Cynthia Levy

NorUrso: Clinical Studies in PSC Phase III (NUC-5): Study Outline

Design: Randomized (2:1), double-blind, placebo-controlled,

multicentre

Sample size: N=330

Dose groups: a) NU 1500mg OD

b) Placebo

Stratification by concomitant treatment with UDCA

Duration: 2 yrs + 2 yrs extension

Subjects: PSC, with AP \geq 1.5 ULN without or on UDCA

Primary endpoint: % patients with partial normalization of sALP (< 1.5 ULN)

<u>AND</u>

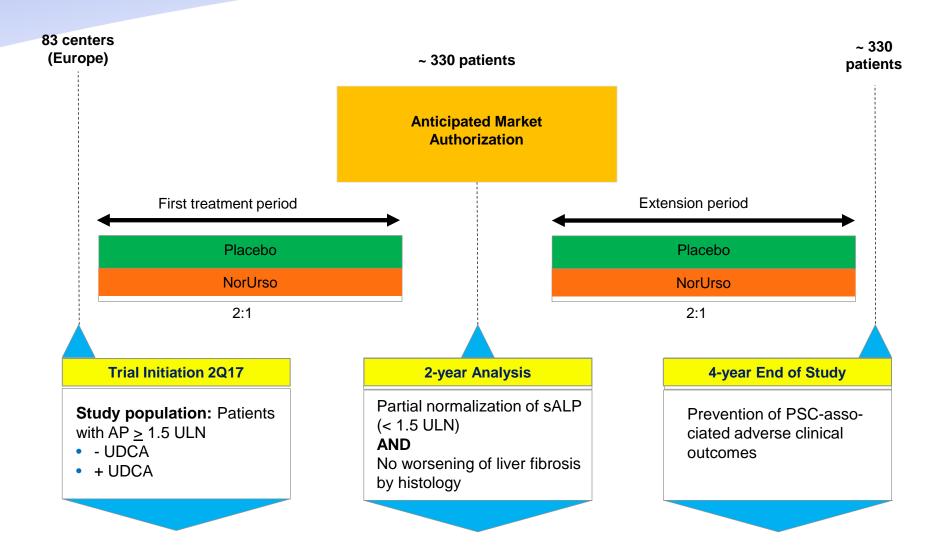
no worsening of staging (Nakanuma) by histology at 2 yrs

Secondary endpoints: • % patients with no worsening of liver fibrosis by

elastography at 2 yrs

• % patients with partial normalization of AP

Course of ELF-test


• At 4 yrs: % patients with adverse clinical outcome

Safety: AE, laboratory parameters

NorUrso: Clinical Studies in PSC

NUC-5: Flow Chart

Efficacy Endpoints (NUC-5)

Primary efficacy endpoint

- Partial normalization of ALP to < 1.5x ULNand Co-primary endpoint
- No worsening of disease stage as determined by the overall
 Nakanuma stage at the week 96 visit compared to baseline

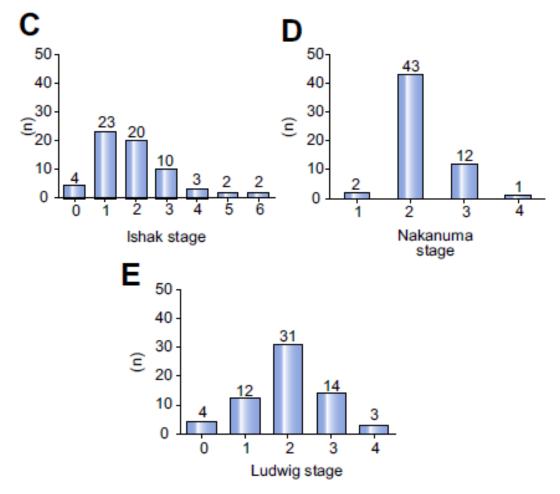
Secondary efficacy endpoints

- Changes in liver stiffness, fibrosis stage (Ludwig & Ishak) & morphometry, histological grading (Ishak)
- Various lab based endpoints (including ELF, IL-8), MRI
- Clinical events (incl. DS), Hannover score, pruritus, fatigue, QoL

Evaluation of a new histologic staging and grading system for primary biliary cirrhosis in comparison with classical

systems

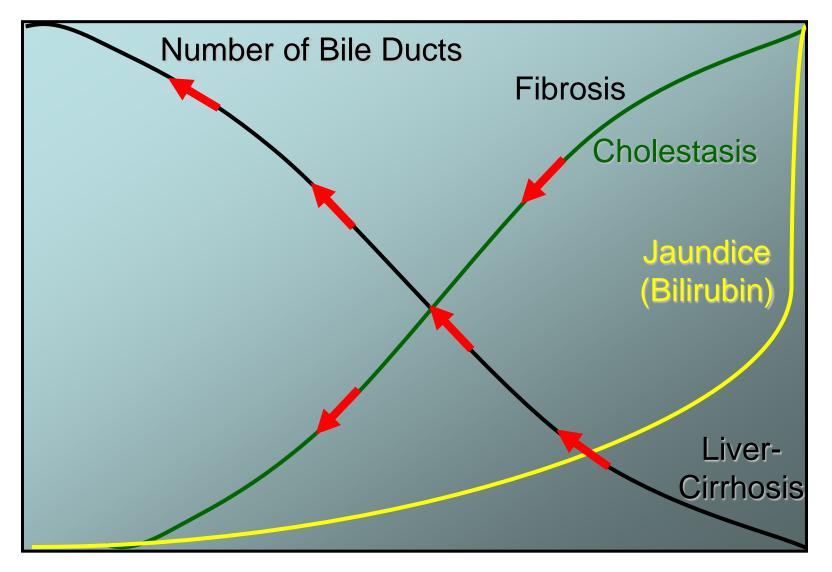
ns	Table 1	Scoring for the staging of PBC
	Score	Criterion
	A. Fibr	osis
	0	No portal fibrosis or fibrosis limited to portal tracts
	1	Portal fibrosis with periportal fibrosis or incomplete septal fibrosis
	2	Bridging fibrosis with variable lobular disarray
	3	Liver cirrhosis with regenerative nodules and extensive fibrosis
	B. Bile	duct loss
	0	No bile duct loss
	1	Bile duct loss in less than one-third of portal tracts
	2	Bile duct loss in one-third to two-thirds of portal tracts
	3	Bile duct loss in more than two-thirds of portal tracts
	C. Dep	osition of orcein-positive granules a
	0	No deposition of granules
	1	Deposition of granules in a couple of zone 1 hepatocytes
		at less than one-third of portal tracts
	2	Deposition of granules in a variable number of zone 1
		hepatocytes at one-third to two-thirds of portal tracts
	3	Deposition of granules in most zone 1 hepatocytes at
		more than two-thirds of portal tracts



Applicability and prognostic value of histologic scoring systems in primary sclerosing cholangitis

Elisabeth M.G. de Vries¹, Joanne Verheij², Stefan G. Hubscher³, Mariska M.G. Leeflang⁴, Kirsten Boonstra¹, Ulrich Beuers¹, Cyriel Y. Ponsioen^{1,*}

Table 1. Patient characteristics.


N	64
Male [n (%)]	40 (63)
Age follow-up (years) [mean (SD)]	49 (±15)
Age at diagnosis PSC (years) [mean (SD)]	38 (±14)
Large duct PSC [n (%)]	54 (84)
Inflammatory bowel disease [n (%)]	43 (67)
Ulcerative colitis [n (%)]	32 (50)
Crohn's disease [n (%)]	8 (12)
Unspecified [n (%)]	3 (5)
Portal tracts [median (IQR)]	13 (9-19)
Biopsy length (mm) [median (IQR)]	14 (11-19)
Disease duration at time of biopsy (months) [median (range)]	0 (0-20)
Follow-up time (months) [median (IQR)]	112 (70-172)
AST xULN [median (IQR)]*	1.40 (1.04-2.64)
ALT xULN [median (IQR)]*	2.04 (1.40-4.43)
ALP xULN [median (IQR)]*	1.65 (1.24-3.39)
γGT xULN [median (IQR)]*	5.80 (3.02-11.10)
Total bilirubin xULN [median (IQR)]*	0.82 (0.52-1.21)
MRS*	-0.28 (-0.77-0.78)

de Vries et al., J Hepatol 2015 (& Hepatology 2017)

Holy Grail of Disease Regression?

Duration (Years – Decades)

Future Perspectives for Clinical Trial Design in PSC

- Combination therapy
 - Again NASH as role model?
- More emphasis on PRO
 - SF 36
 - Fatigue Scores; autonomic dysfunction
 - New PSC PRO ¹
 - High correlations with relevant domains of other scores: PBC-40, SF-36
 - Could be part of combined endpoints
 - Role model systemic sclerosis (e.g. CRISS)²
- Focus on (functional) imaging
 - Non-invasive
 - Heterogenity with the liver

Rheumatology News.

≡ FULL MENU

CME

Conference Coverage

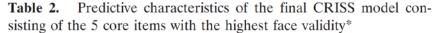
Rheumatoid Arthritis

Lupus & CTD

Views F

Psoriatic Arthritis

Lifestyle

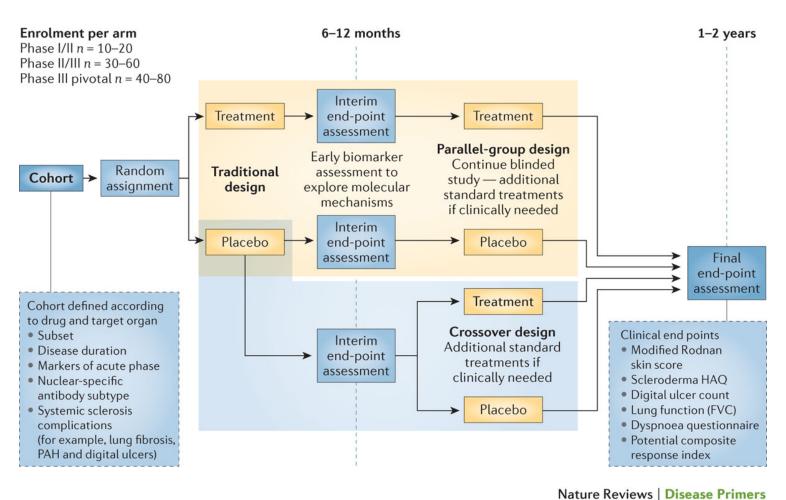

Nerve growth factor antibody cuts OA pain with low AEs

CONFERENCE COVERAGE

CRISS hailed as transforming systemic sclerosis drug development

Publish date: July 10, 2018

By Mitchel L. Zoler; Rheumatology News


	•
Overall area under the curve	0.9861
Overall sensitivity (95% CI)	0.9821 (0.9816-0.9827)
Overall specificity (95% CI)	0.9310 (0.9300-0.9321)
Unadjusted beta coefficient	, ,
(by core item)	
MRSS	-0.81
FVC % predicted	0.21
HAQ DÎ	-0.40
Patient global assessment	-0.44
Physician global assessment	-3.41
Standard error (by core item)	
MRSS	0.21
FVC % predicted	0.08
HAQ DÎ	0.24
Patient global assessment	0.26
Physician global assessment	1.75

^{*} CRISS = composite response index in diffuse cutaneous systemic sclerosis; 95% CI = 95% confidence interval; MRSS = modified Rodnan skin thickness score; FVC = forced vital capacity; HAQ DI = Health Assessment Questionnaire disability index.

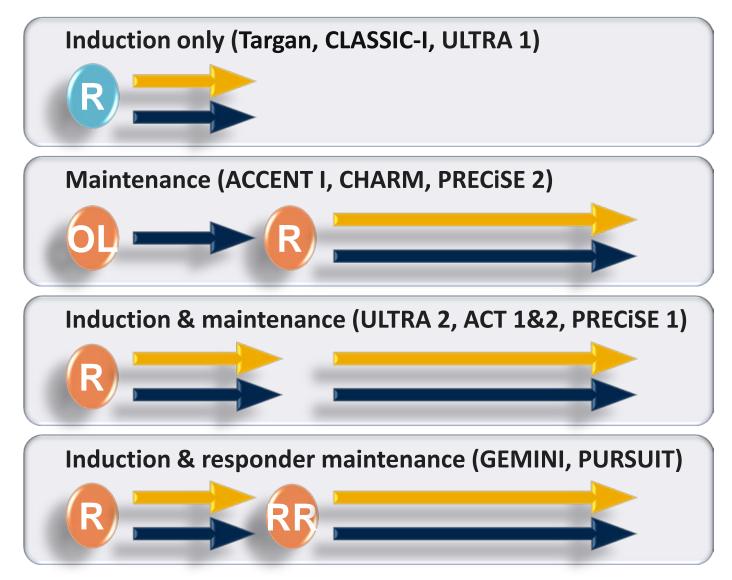
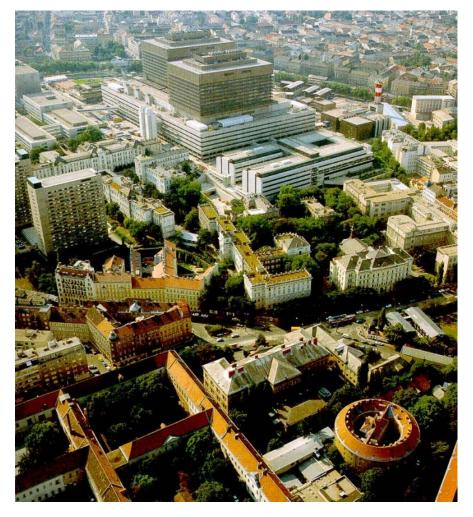


Figure 6 Future of clinical trial design in systemic sclerosis



Trial Designs in IBD

Thank you for your attention!

michael.trauner@meduniwien.ac.at

Division of Gastroenterology and Hepatology Department of Internal Medicine III