An industry perspective on high impact QSP and QST model applications in clinical drug development

Session 3: Mechanistic models for the future; challenges and opportunities in the context of MIDD & risk assessment

Anna Sher, MD, PhD

Head of Quantitative Systems Pharmacology, Clinical Pharmacology and Quantitative Medicine, Respiratory, Immunology and Inflammation Research Unit, R&D GSK - anna.a.sher@gsk.com

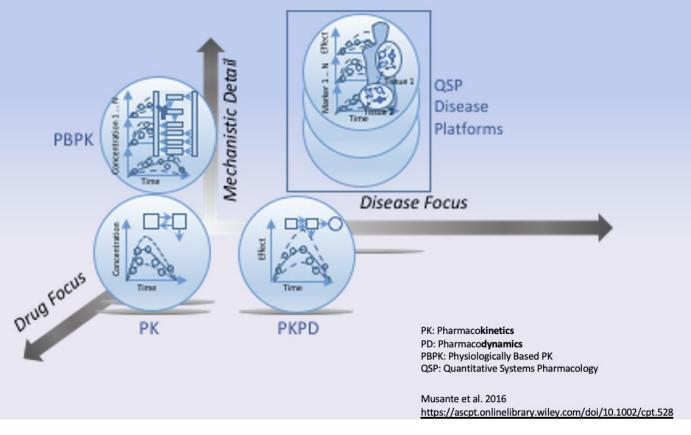
An industry perspective on high impact QSP and QST model applications in clinical drug development

Anna Sher, personal position informed by the QSP/T Community of Practice at GSK

Session 3: Mechanistic models for the future; challenges and opportunities in the context of MIDD & risk assessment

HMA/EMA multi-stakeholder workshop on reporting and qualification of mechanistic models for regulatory assessment October 8-9, 2025

The presentation draws upon the collective experience and insights of multiple pharmaceutical industry experts at GSK with experience of QSP and QST applications, with discussions facilitated by the GSK QSP/T Community of Practice.


The views expressed during this presentation, as well as any commentary shared during the conference, are solely my own and do not necessarily reflect the official position or opinions of my employer, GSK.

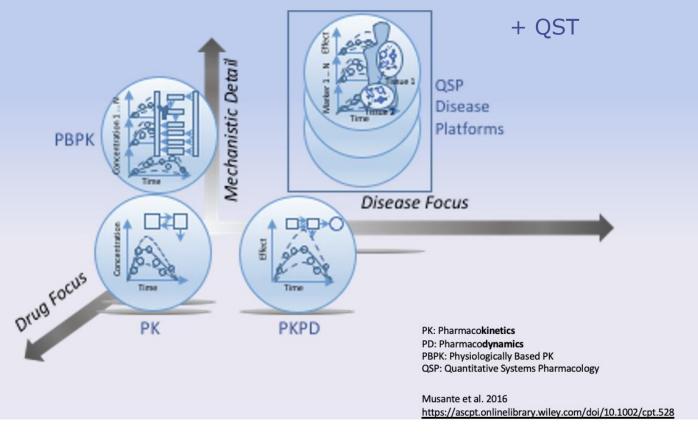
I would like to extend gratitude to the organizers for their efforts in coordinating the presentations, facilitating the scope and providing this opportunity to participate in the HMA/EMA multi-stakeholder workshop on reporting and qualification of mechanistic models for regulatory assessment, held on October 8-9, 2025.

What is QSP?

We use mathematical modelling and simulation to describe mechanistic, time-course relationships between target modulation and disease biomarkers & clinical outcomes...

...to predict and interpret clinical response and to improve decision-making throughout the pipeline

- QSP is mechanistic modelling linking target modulation to disease modification
- QSP focus is on disease, pathways, and mechanisms
- QSP and QST are tools to generate Virtual Patients and run In Silico Trials
- QSP and QST provide uncertainty quantification and, hence, quantitative support for internal decision-making and regulatory interactions
- Different computational models are used in QSP/T including
 - Temporal (ordinary differential equations)
 - Spatio-temporal (partial differential equations)
 - Agent-based
 - Statistical (including Bayesian)
 - o Boolean
 - Empirical curve fitting
 - Machine learning

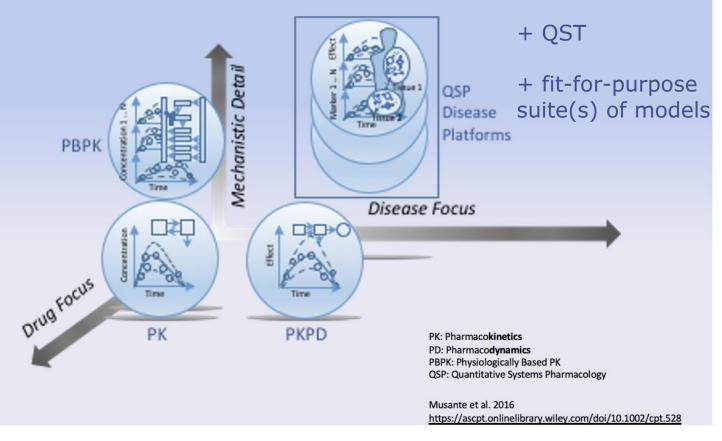


What is QSP?

We use mathematical modelling and simulation to describe mechanistic, time-course relationships between target modulation and disease biomarkers & clinical outcomes...

...to predict and interpret clinical response and to improve decision-making throughout the pipeline

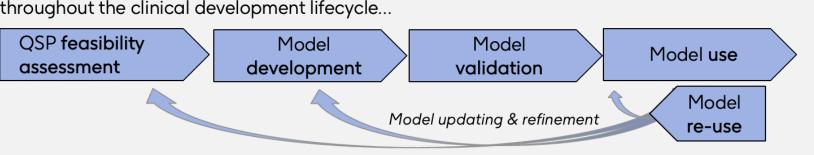
- QSP is mechanistic modelling linking target modulation to disease modification
- QSP focus is on disease, pathways, and mechanisms
- QSP and QST are tools to generate Virtual Patients and run In Silico Trials
- QSP and QST provide uncertainty quantification and, hence, quantitative support for internal decision-making and regulatory interactions
- Different computational models are used in QSP/T including
 - Temporal (ordinary differential equations)
 - Spatio-temporal (partial differential equations)
 - Agent-based
 - Statistical (including Bayesian)
 - o Boolean
 - Empirical curve fitting
 - Machine learning

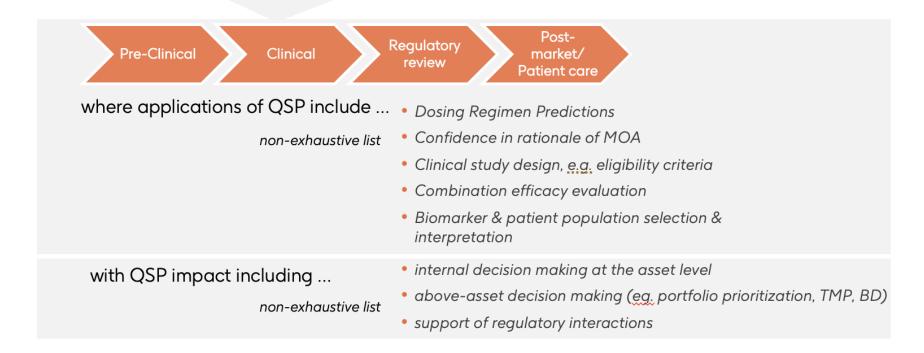


What is QSP?

We use mathematical modelling and simulation to describe mechanistic, time-course relationships between target modulation and disease biomarkers & clinical outcomes...

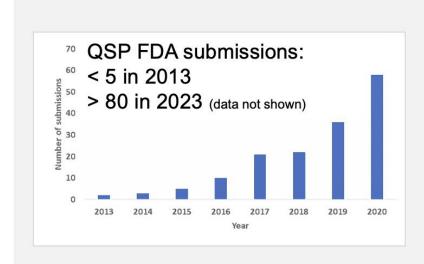
...to predict and interpret clinical response and to improve decision-making throughout the pipeline

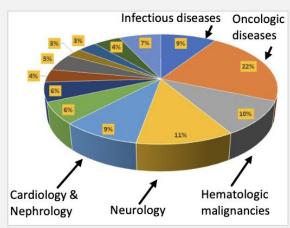

- QSP is mechanistic modelling linking target modulation to disease modification
- QSP focus is on disease, pathways, and mechanisms
- QSP and QST are tools to generate Virtual Patients and run In Silico Trials
- QSP and QST provide uncertainty quantification and, hence, quantitative support for internal decision-making and regulatory interactions
- Different computational models are used in QSP/T including
 - Temporal (ordinary differential equations)
 - Spatio-temporal (partial differential equations)
 - Agent-based
 - Statistical (including Bayesian)
 - o Boolean
 - o Empirical curve fitting
 - Machine learning

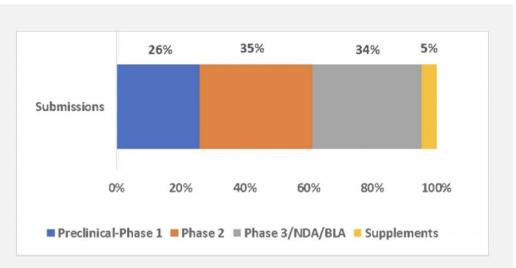


Development, applications and impact of QSP models

QSP model development process supports decision making end-to end and, especially, throughout the clinical development lifecycle...



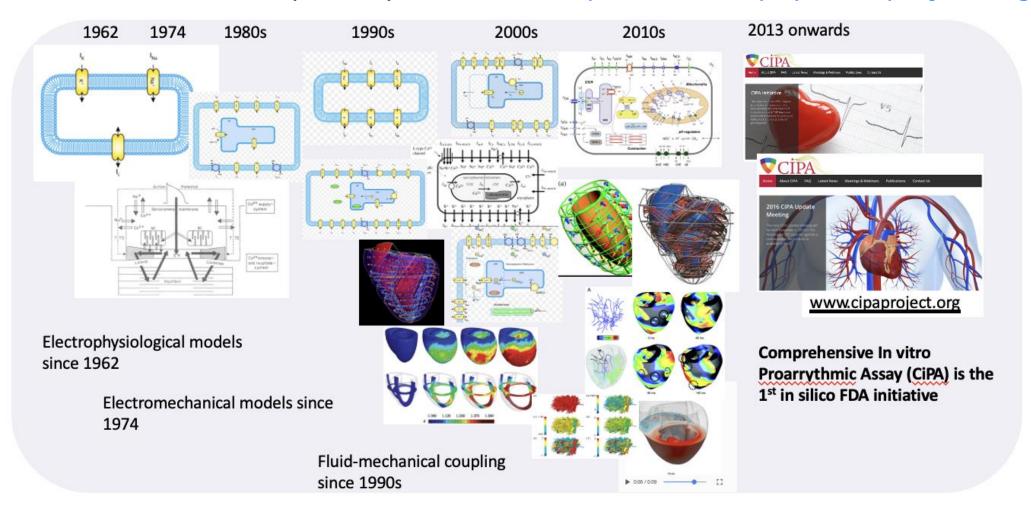




QSP and QST are increasingly used to support regulatory interactions

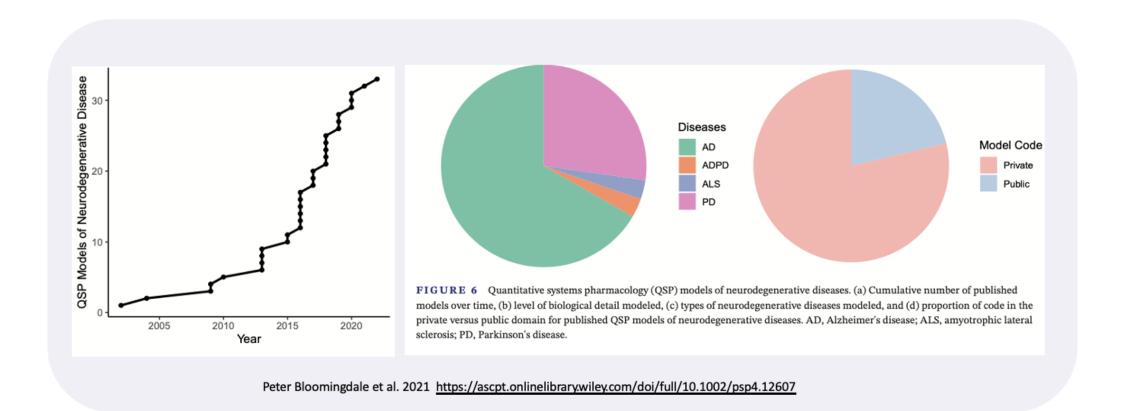
Open-source reference models are being encouraged (of note: collaborations between academia and industry increasingly provide more opportunities for publishing and peer-review of models)

Bai et al. 2021 https://ascpt.onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.12709


Bai et al. 2024 https://pmc.ncbi.nlm.nih.gov/articles/PMC11646928/

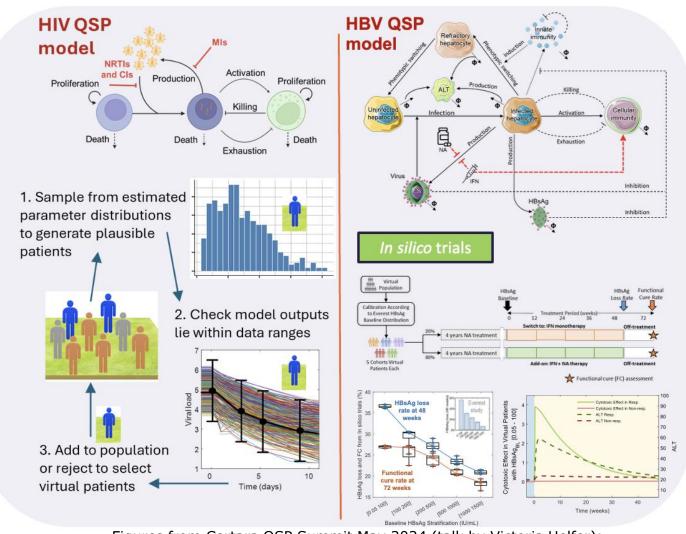
Cardiac QSP and QST modeling

Cardiac QSP and QST are among the most abundant open-source modeling, with an available curated repository of models https://models.physiomeproject.org/welcome



Neurodegenerative QSP and QST modeling

Neurodegenerative diseases is a therapeutic area example that highlights a key challenge of limited publicly available mechanistic mathematical models



Infectious diseases QSP and QST modeling

Viral dynamics modelling such as HIV and HBV highlight the potential for developing reference, open-source QSP and QST models, calibrated and validated using publicly available clinical data

- Key viral dynamics modelling objectives
 - to develop viral dynamics models
 - to build a predictive tool for in silico clinical trials that can be applied to different drug classes
 - to facilitate identification of optimal drug combinations and drug regimens while accounting for interindividual variability
 - to customize these models further to impact internal pharma portfolios
- At GSK, we are leveraging digital twins to predict combination therapies in HIV and HBV, and inform optimal clinical trial designs
- Publications
 - Manuscript on HBV Cortes-Rios et al. 2025 https://pubmed.ncbi.nlm.nih.gov/40443045/
 - Manuscript on HIV model (in preparation)

Figures from Certara QSP Summit May 2024 (talk by Victoria Helfer); ACoP October 2024 (talk and poster by Javiera Cortes-Rios)

HIV: Human Immunodeficiency Virus

Model-Informed Vaccine Development (MIVD) is an emerging paradigm

Review > J Pharm Sci. 2024 Jan;113(1):22-32. doi: 10.1016/j.xphs.2023.10.04 Epub 2023 Nov 2.

A Quantitative Clinical Pharmacology-Based Framework For Model-Informed Vaccine Development

Rajat Desikan ¹, Massimiliano Germani ², Piet H van der Graaf ³, Mindy Magee ⁴

PMID: 37924975 DOI: 10.1016/j.xphs.2023.10.043

Key inflection points to be informed by QSP:

Phase 1/2

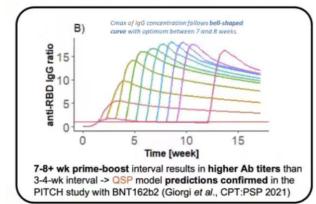
clinical

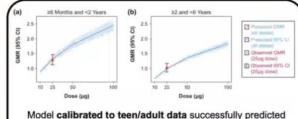
- Choice of vaccine modality (various modalities can be compared in silico)
- Choice of mRNA construct from a library of mRNAs
- Choice of adjuvant

Candidate

selection

Valency (#antigens to include?)


- Optimal dose and prime-boost interval selection for phase 3
- Probability of success calculations
- Informing phase 3 parameters such as inclusion/exclusion criteria, especially in the context of preexisting immunity
- Population efficacy estimates overall and across sub-populations
- In silico testing of non-inferiority to competitor vaccines
- Reactogenicity modelling to inform safety considerations
- Competitive benchmarking Regulatory review Real words


Optimal design of preclinical experiments

Preclinical

- First-in-human vaccine & adjuvant dose prediction
- Informing study design & simulations to answer regulatory questions
- Influencing vaccine formulation questions e.g., how do changes in vaccine formulations influence immunogenicity?
- Immunogenicity and reactogenicity analyses across patient subpopulations (young vs. old; immunocompromised ...)
- Waning of immunity how long does protection last? Do we need regular boosting (e.g., annual for influenza) or none (e.g., measles)?
- Optimal vaccine deployment depending on epidemiology and disease prevalence
- Updating of vaccines for variants with evolving pathogen (e.g., SARS-CoV-2, influenza)
- Correlates of protection
- Predictions for real-world vaccine stability & immunogenicity, and thus, shelf-life

Two case studies (optimal prime-boost interval, pediatric dose selection):

Model calibrated to teen/adult data successfully predicted the immunogenic response of young children (aged 2–5 years) and infants (aged 6–23 months) to different dose levels of the COVID-19 vaccine, mRNA-1273 -> IS/ID model predictions confirmed by the phase II/III pediatric KidCOVE clinical study, and informed Moderna's pediatric vaccine dose (Ivaturi et al., CPT PSP 2025)

Phase 3

clinical

Phase 0

A clinical QSP/T perspective

Future is Bright	Caution is Warranted
 Huge opportunities for impacting internal decision-making in R&D, including business development Huge growth in QSP modelling groups within pharma QSP/T is becoming mainstream 	 Huge expectations Many technical questions remain as technology solutions emerge Standard processes are still under development for both drug developers and vendors
 Computational tools are exploding Advances in software and hardware allow us to solve equations faster and process data more efficiently 	 Complex landscape: external partnering with the many silos is standard practice Very limited open source: less community-based peer-review
ICH M15, regulatory workshops, submissions facilitates making QSP/T a part of the MIDD toolbox	 Limited community-based good practices and standards Qualification of a particular use case, including model and/or virtual patient validation, is often subject to individual bias and preferences

Concluding remarks

Key takeaways critical to success of clinical QSP:

- > Fit-for-purpose and question-specific QSP and QST modeling
- Adapting to constantly evolving QSP and QST models as standard practice within drug development decision-making and regulatory review
- Close collaboration, communication and alignment with multi-disciplinary teams (biologists, clinicians and disease-area experts) across both drug developer(s) and regulators

Acknowledgments

<u>GSK</u>

Viva Aayar

Kylie Beattie

Alienor Berges

Nicky Best

David Dai

Rajat Desikan

David Fairman

Cibelle Falkenberg

Ciaran Fisher

Grant Generaux

Yash Gandhi

Mario Giorgi

Jingqi Gong

Anubha Gupta

Jim Harvey

David Hodson

Brett Howell

Kaivan Khavandi

Zackary Kenz

Nick McMahon

Mindy Magee

Scott Marshall

Murad Melhem

Krithika Mohan

Ahmed Nader

Mehdi Nikfar

Joel Owen

Aarti Patel

Michelle Przedborski

Marissa Renardy

Roy Song Jens Sydor

Kunal Taskar

Dominic Whittaker

James Yates

Stefano Zamuner

Chiara Zecchin

and many others from the GSK QSP/T Community of Practice and beyond including multiple internal GSK clinicians, biologists, virologists, biomarker leads, statisticians, epidemiologists, and many other collaborators

Companies: Applied Biomath, Certara, DifferentiaBio, Entelos, Fractal Therapeutics, FulcrumNeuro, InSysBio, Metrum, NovaInSilico, PumaAI, RES, Rosa & Co, Simulations Plus, Vantage and many other

EXTERNAL COLLABORATORS

Helen Byrne, Oxford University
Morgan Craig, Montreal University
David Gavaghan, Oxford University
Javiera Cortes-Rios, Chili University
Anna Kirpichnikova, Stirling University
Philip Maini, Oxford University
Michale Mackey, McGill University
CJ Musante, former Pfizer
Lyndsey Meyer, Pfizer
Steven Niederer, Imperial College
Denis Noble, Oxford University
Chris Rauckauckas, MIT
Alan Richard, Pfizer
Theodore Rieger, Pfizer
and many other

Thank you to the HMA/EMA workshop organizers!

Thank you

anna.a.sher@gsk.com

