

NAFLD: Population in need, clinical trial duration and endpoints

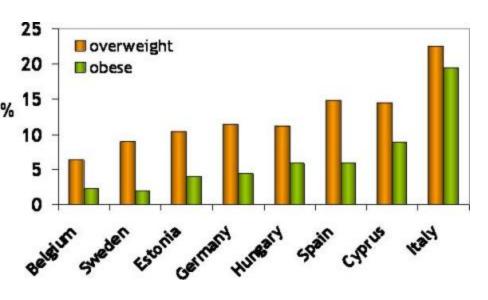
The Children's Memorial Health Institute
Warszawa/ POLAND

Piotr Socha

Position statements/ practical guidelines

Diagnosis of Nonalcoholic Fatty Liver Disease in Children and Adolescents: Position Paper of the ESPGHAN

Hepatology Committee JPGN 2012

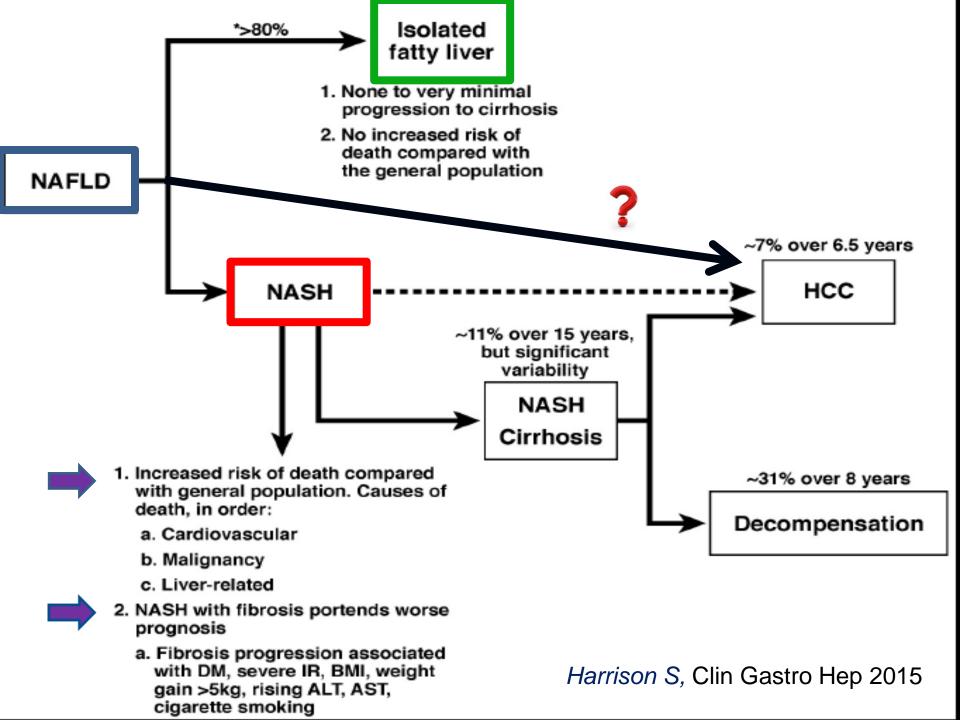

*Pietro Vajro, [†]Selvaggia Lenta, [‡]Piotr Socha, [§]Anil Dhawan, ^{||}Patrick McKiernan, [#]Ulrich Baumann, **Ozlem Durmaz, ^{††}Florence Lacaille, ^{‡‡}Valerie McLin, and [¶]Valerio Nobili

NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN)

JPGN 2017

†Miriam B. Vos, ^{‡§}Stephanie H. Abrams, ^{‡§}Sarah E. Barlow, ^{||}Sonia Caprio, ^{¶}Stephen R. Daniels, ^{**††}Rohit Kohli, ^{‡‡§§}Marialena Mouzaki, ^{||||}¶Pushpa Sathya, ^{##***}Jeffrey B. Schwimmer, ^{¶*}Shikha S. Sundaram, and ^{**††}Stavra A. Xanthakos

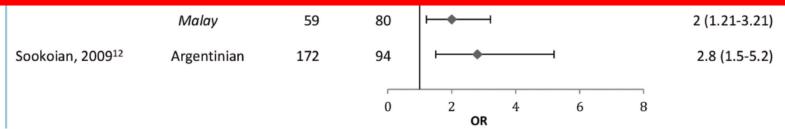
NAFLD and obesity



IDEFICS study-childhood obesity

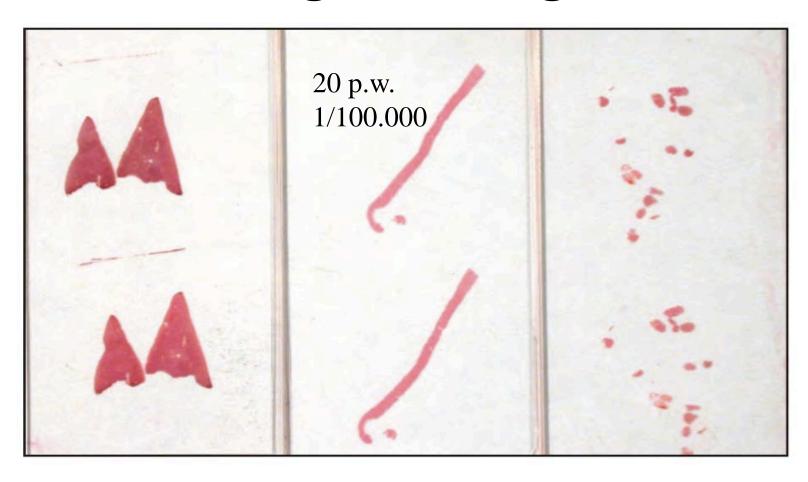
- NAFLD prevelance in children ≈10%
 - autopsy studies in Canada
 - more common in older children
- NAFLD in obese children≈40%

frequency vs severity



Population at risk-genetic factors?

First author, year	Population	NAFLD (n)	Control (n)	Forrest Plot	OR (95% CI)
Hotta, 2010 ¹³	Japanese	253	578	⊢	1.73 (1.25-2.38)
Kawaguchi, 2012 ¹¹	Japanese	529	942	H∳H	1.66 (1.43 – 1.94)


In obese patients, the presence of the PNPLA3p.I148M allele might be associated with greater improvement of hepatic steatosis after bariatric surgery in comparison to carriers of PNPLA3 wild-type alleles

Krawczyk M, Surg Obes Relat Dis 2016

- PNPLA3 p.I148M variant associated with NAFLD
 - No clear association with histology and disease severity

Is liver biopsy representative for the organ damage?

Management of an obese child with NAFLD

NAFLD suspected or diagnosed

Response to weight reduction therapy

No response to weight reduction therapy

Defining risk of NASH/fibrosis

Family history, highly increased ALT etc.

Consider liver biopsy

Consider medication:

Metformin- when insulin resistance

DHA, selected probiotics- when advanced steatosis on US and high fibrosis risk

Vitamin E- high fibrosis risk

Population in need for pharmacotherapy

- Advancing liver disease
 - NASH, advanced and/or mild fibrosis?
 - Significant steatosis?
- Defining the advancing liver disease
 - Liver biopsy?
 - Surrogate markers
 - US combined with ALT?
 - More specific markers

End points

Histology

- Limited clinical indications
- Sampling error

Non-invasive

- Moderate specificity and sensitivity
- Many to choose
- Some promising markers still under investigation
- Still... the only justified for ethical reasons?

Examples of end points for treatment of NAFLD

DHA trial

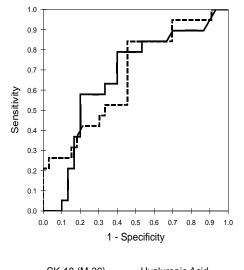
- •Primary: improvement of US steatosis
- Secondary: insulin resistence, ALT,
- TG, weight
 - Nobili V, Arch Dis Child 2011

TONIC trial

- Primary- <u>decrease of ALT</u>,
- Secondary- histology
 - Lavine JE, JAMA 2011

DHA/EPA trial

- Primary: <u>decrease of ALT</u>
- Secondary: US steatosis, GGTP, leptin, adiponectin, insulin resistance
 - Janczyk W, J Pediatr 2015

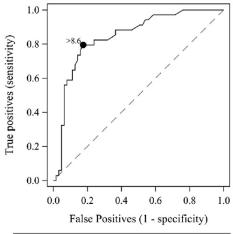

Vitamin D+DHA trial

- Primary: <u>histology</u> (NAFLD score)
- Secondary: insulin-resistance, lipid profile,
 ALT
 - Corte CD, PlosOne 2017

Assessment of fibrosis: Metaanalysis- elastography+CK18

- Transient elastography
 - good in diagnosing F ≥ 3
 - (85% sensitivity, 82% specificity)
 - excellent inF4
 - moderate accuracy for $F \ge 2$
 - (79% sensitivity, 75% specificity)
- CK18 (serum)
- moderate accuracy for diagnosing NASH
 - 66% sensitivity, 82% specificity
 - when optimal cut-offs are used, sensitivity improves to 82%, while specificity is 98%.

Receiver Operating Characteristic Analysis

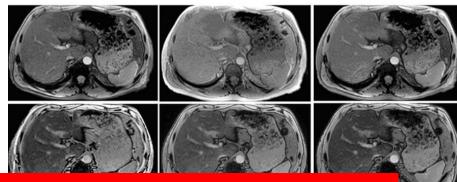

— CK-18 (M-30) — Hyaluronic Acid

Fibroscan to detect significant fibrosis and steatosis in children

- 128 patients with liver biopsy
- 8.6 kPa optimal cutoff to predict significant

fibrosis

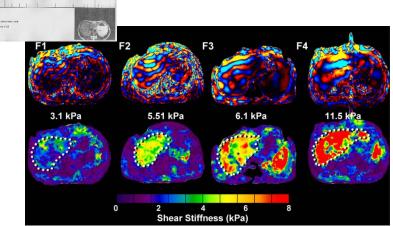
Lee CK, J Pediatr 2013


	METAVIR Stage		
	F0 – F2	F3 – F4	
N*	(N = 63)	(N = 34)	P
97	6.1	14.6	<.0001
	(4.9, 7.6)	(8.9, 22.6)	
Group 2 (s	serum + TE)		

TE (kPa)

- CAP to detect steatosis- cut off values discussed:
 - 225 dB/m- compared to histology in 69 ch.
 - Deasai NK, J Pediatr
 2016
 - 249 dB/m from >300 children with obesity
 - Ferraioli G, BioMed Central 2017

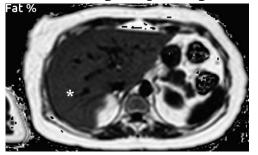
MRI: steatosis and fibrosis


- MRI-imaging
 - **Fat** fraction assesment
 - very high sensitivity and specificity
 - steatosis> 5% detected

- MRI Higher liver fat content, measured by MRI-
 - PDFF, is associated with fibrosis progression.
 - Ajmera V, Gastroenterology 2018
 - Comparable to CAP

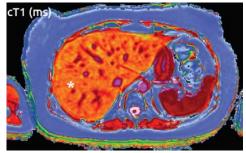
Karlas T. PLOS One 2014

- MR elastography
 - AUROC for staging **fibrosis** F1-F4: 0.94, 0.97, 0.96, and 0.97 Guo Y, Metaanalysis. Abdom Imaging 2014

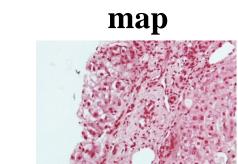


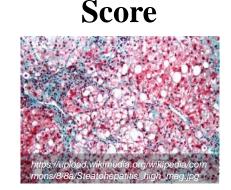

MRI elastography

- Under investigation in children
- Sedation needed in young children
- Expensive
- It requires specific hardware and software
- Experience in children
 - 90 children with NAFLD
 - Schwimmer JB, Hepatology 2017
 - 86 pts with liver biopsy, good performance, steatosis as a confounding factor
 - Trout TE, Radiology 2018

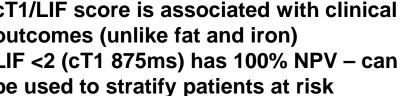

A virtual biopsy using LiverMultiScan

Kids4Life project




T2*

MRI-PDFF



Corrected T1 / LIF

cT1/LIF score is associated with clinical outcomes (unlike fat and iron) LIF <2 (cT1 875ms) has 100% NPV - can be used to stratify patients at risk

Pavlides M, J Hepatol 2016

JOURNAL OF HEPATOLOGY

The Home of Liver Research MRI - a crystal ball for your liver's future?

In a prospective study at the University of Oxford, 112 patients with chronic liver disease (n = 112) were subjected to MR imaging and standardised multiparametric analysis. MRI findings (Liver Inflammation and Fibrosis score, iron, fat) were predictive for future liverrelated clinical events such as ascites, cancer or death.

Fibrotic markers

Biomarker	formula	
Fibrotest	α -2-makroglobulin, γ GT, apolipoprotein A1, haptoglobin, bilirubin, age, sex	
Forns Index	7.811 - 3.131 x ln(PLT) + 0.781 x ln(GGT) + 3.467 x ln(age) - 0.014 x (cholesterol)	
APRI	AST (/ULN)/PLT (109/L) x 100	
FibroSpect	α-2-makroglobulin, hialuronic acid and TIMP-1	
Enhanced Liver Fibrosis score (ELF)	Hialuronic acid, MMP-3 and TIMP-1	
Fibroindex	1.738 - 0.064 x (PLT [104/mm3]) + 0.005 x (AST [IU/L]) + 0.463 x (gammaglobulin [g/dl])	
Fibrometer	PLT, INR, AST, α -2-makroglobulin, hialuronic acid, urea and age	
FIB-4	age x AST [U/L]/(PLT [109/L] x (ALT [U/L]	
NAFLD Fibrosis Score	$(-1.675 + 0.037 \text{ x age} + 0.094 \text{ x BMI (kg/m2)} + 1.13 \text{ x IFG/diabetes (yes} = 1, no} = 0) + 0.99 \text{ x AST/ALT} - 0.013 \text{ x PLT (x109/L)} - 0.66 \text{ x albumin [g/dl]})$	
BARD score	(BMI ≥28 = 1; AST/ALT ≥0.8 = 2; diabetes= 1; score ≥2, advanced fibrosis= 17)	

Clinical trial duration

- VSL#3 trial: 4 months
 - Alisi A, Aliment Pharmacol Ther. 2014
- TONIC trial (vitamin E& metformin): 96 weeks
 - Lavine JE, JAMA 2011
- DHA/EPA study: 6 months
 - Janczyk W, J Pediatr 2015
- DHA study: 6 months
 - Nobili V, Arch Dis Child 2011
- Vitamin D+DHA study: 12 months
 - Corte DC, PlosOne 2017

Trial duration and end points

Short duration: better compliance Longer duration: better end points

Steatosis
ALT

Steatosis/fibrosis

NASH

3-4 months

6-12 months

>1 year

Suggested solutions

Population

- Preferentially selected based on liver biopsy
- Genetic factors and risk/surrogate markers to consider

End points

Preferentially surrogate markers

Duration

- Min. 1 year for fibrosis as outcome parameter
- Min. 6 months for combined parametres