

Federal Institute for Drugs and Medical Devices Stakeholder guidance workshop on shared facilities joint with SWP EMA London, June 20th -21st 2017

Setting HBEL for highly hazardous products to ensure patient safety – application of the Q&A

Roland Frötschl Genetic and Reproductive Toxicology

Contents

- 1. Introduction
- 2. Highly hazardous products
- 3. Products considered not highly hazardous
- 4. Pros and Cons of this approach
- 5. Examples
- 6. Conclusions

History

- EU directive 2003/94 Article 8 para 2
 - ..manufacturing... laid out in such a way as to minimise the risk of error ..permit effective cleaning.....to avoid contamination, cross contamination and ... any adverse effect on the quality
- Historically 1/1000th of lowest clinical dose or 10 ppm used as limits for cross contamination
- Concept paper EMA/CHMP/SWP/598303/2011
 - Limits arbitrary and not pharm/tox (science) based
 - may be too restrictive (not highly hazardous products)
 - not restrictive enough (highly hazardous products)
- Resulted in EMA/CHMP/CVMP/SWP/169430/2012
 - Objective: recommend an approach to review and evaluate pharmacological and toxicological data to enable determination of threshold levels as referred to in the GMP guideline.

Ensuring patient safety and pharmaceutical quality

- Medicinal products should
 - meet pharm/tox (science) based acceptable limits
 - meet pharmaceutical quality based acceptable limits
- Deriving HBEL from pharm/tox data
 - Calculating compound specific PDEs using all available animal and human data
- HBEL > good pharmaceutical quality limit, use good pharmaceutical quality limit
- Use adjustment factors to set cleaning limits that ensure pharmaceutical quality and acceptable risk level for patient exposure

Guideline on setting health based exposure limits

- Objective: recommend an approach to review and evaluate pharmacological and toxicological data to enable determination of threshold levels as referred to in the GMP guideline.
- Method to derive health based exposure limits for a residual active substance is based on the so-called Permitted Daily Exposure (PDE) as described in residual solvents guidance
- PDE derived assuming human exposure
 - adaptation to animal species for veterinary products
 - usually as dose/kg (VICH GL 18)
 - considering highly sensitive species
- Veterinary products for food-producing animals need to be consumer and vet-protective

HBEL needed to ensure patient safety

- To do a full toxicological assessment requires toxicological expertise and is a major task
- Full toxicological assessment or even sufficient toxicological data may not be publicly available for all pharmaceutical products to derive a HBEL
- For products with a well established clinical safety profile and favourable therapeutic window a full toxicological assessment may not be necessary to establish an acceptable HBEL

The Q&A

(EMA/CHMP/CVMP/SWP/463311/2016)

Approaches to derive a HBEL

- For highly hazardous products
 - Full toxicological assessment including all available animal and human data to derive acceptable HBEL
 - OEL data based on full risk assessment by a well known authority can be used to derive HBEL (adjustment factors usually needed to adjust for target population)
- For products not considered highly hazardous
 - Full toxicological assessment to derive HBEL
 - Use of OEL (from well known authority) to derive HBEL
 - Use of clinical data only for products with a well established clinical safety profile
 - adverse effects occur only orders of magnitude above therapeutic doses

Highly hazardous products HHP

Highly hazardous products

EMA/CHMP/CVMP/SWP/463311/2016

- Can cause serious adverse effects at low doses full toxicological assessment to derive safe HBEL considered necessary
- Can in most cases be identified on their inherent pharm/tox characteristics such as e.g.
 - mutagenic compounds, potentally or know human carcinogenic
 - teratogenic and reproductive toxicants causing effects at low doses
 - seriously target organ toxic at low doses (~ < 10 mg/d clinical, ≤ 1 mg/kg/d animal)
 - Highly pharmacological potent (i.e. daily dose $\leq 1 \text{ mg/d}$)
 - Highly sensitising potential should be handled in dedicated facilities (ICH Q7) unless consumer protective levels can be determined and ensured in production

Examples for highly hazardous drugs

- Cytotoxic/mutagenic anticancer drugs like alkylating cytostatics such as
 - Cyclophosphamide, temozolomide, anthracyclins like doxorubicin
- Contraceptives and sexual hormones such as
 - Cyproteronacetate, estrogens, progesterons
- Some immunosuppressive drugs such as
 - mycophenolate
- Receptor agonists such as
 - Retinoids, high potent AHR agonists and CAR agonists

Calculation of HBEL

- Derive PDE from toxicological data (NOAEL or justified BMD) with full toxicological assessment
- Use of TTC for mutagenic compounds (considered as extremely toxic)
 - This approach would be considered as conservative enough

Products not considered as highly hazardous

Acceptable limits for not highly hazardous products

• 1/1000th of therapeutic lowest clinical dose

$$MACO = \frac{TDD_{previous} \ x \ MBS}{SF(1000) \ x \ TDDnext}$$

• Calculation of HBEL from toxicological data

$$PDE = \frac{NOAEL}{F1 \ x \ F2 \ x \ F3 \ x \ F4 \ x \ F5}$$

- Additional factors may be for residual uncertainties
- From a toxicologic point of view meeting the PDE as ADI for cross-contaminants in the next product in a worst case senario (maximum daily therapeutic dose) would be sufficient.

Modifying factor used in PDE calculation

factor	range	description
F1	2-12	Interspecies extrapolation (mouse=12, dog=2)
F2	10	Inter-individual differences
F3	1-10	Accounts for study duration, 10 for \leq 4weeks repeated dose study
F4	1-10	Severe toxicity, e.g. teratogenic = 10
F5	1-10	Account for LOEL and severity of effect (NOEL =1)

Additional modifying factors may be appropriate to account for residual uncertainties not covered by MF 1-5, e.g. lack of reprotox data

Sources for toxicological data for PDE calculation

- Pharmacological/Toxicological data
 - SmPC 5.2 and 5.3 contain data of clinical and preclinical pharmacokinetic and pharmacological data and human releant toxicological data
- Other public sources such as
 - Toxnet, ToxRefDB, ACToR
 - OELs derived by competent authorities or originator to ensure workers safety (WHO, OSHA, MAK)
 - ECHA database of registered compound data (https://echa.europa.eu/information-onchemicals/registered-substances)

Ensure pharmaceutical quality

- EU directive 2003/94 Article 8 para 2
 - ..manufacturing... laid out in such a way as to minimise the risk of error ..permit effective cleaning.....to avoid contamination, cross contamination and ... any adverse effect on the quality
- Effective process control strategies should be applied in manufacturing

Pros and Cons of these approaches

Disadvantage in having the PDE approach only for all compounds

- To perform a full toxicological assessment requires toxicological expertise
 - This expertise may not be available at all SMEs
 - Buying in of expertise needed
- Money and time consuming process for SMEs
- May not be needed for not highly hazardous products
 - 1/1000th of lowest therapeutic dose method conservative enough to ensure safe HBEL setting

Advantage of a flexible approach

- Full toxicological assessment only required for products with a real safety concern
 - Highly hazardous products
 - Mutagenic compounds
 - Highly pharmacologically potent compounds
 - High teratogenic/reproductive toxic compounds
 - Highly sensitizing compounds
- For products of low toxic concern the old 1/1000th of the therapeutic dose is considered conservative enough to derive and ensure setting of an acceptable HBEL
- Companies only producing products of low toxic concern do not need to buy in toxicological expertise

Potential points for controversy

- Q&A looks like zigzag-ing between the old approach and the guidance (EMA/CHMP/ CVMP/ SWP/169430/2012)
- The border between highly hazardous and not highly hazardous compounds cannot be clearly defined
 - The recommendation in Q&A Q2 are intended to give a conservative guide
- Defining the most relevant effect in chronic toxicology studies and the most relevant study may vary.

Examples how to derive a HBEL - Highly hazardous compound

Tacrolimus has been produced as previous product

- Tacrolimus is a potent immunosuppressant used in organ transplantation surgery
- The minimum therapeutic dose is 3.75 mg/d or (75µg/kg/d), (range 0.075-0.2 mg/kg/d, heart kidney transplants)
- starting doses are even lower (range 0.01 0.05 mg/kg/d) (high pharmacol. potency)
- Kidney is a major target organ of toxicity, nephrotoxicity the most frequent adverse reaction at clinical doses
- Maternal effects, developmental effects in rabbits with LOAEL 0.32mg/kg/d (< 1mg/kg/d)
- OEL (TWA) 0.2 μg/m³ (internal value from Astagraf Safety Data sheet, publicly available on internet, without specifying data)

 $-0.2 \ \mu g/m^3 \ x \ 10 = 2 \ \mu g/d < 10 \ \mu g/d$

• Tacrolimus should be regarded as highly hazardous and a full toxicological assessment should be performed

Tacrolimus data sources

- Good sources for medicinal products are
 - Toxnet
 - Summarizes data of various free databases, mostly detailed study information
 - PI (US-FDA) or SmPC (Europe)
 - Available in the world wide web, PDR, pharma companies
 - Clinical as well as relevant preclinical data however sometimes without dose details
 - Occupational limits (OEL)
 - Data used for calculation of the OEL should be available (this is not the case for the OEL set for Astagraf found on the safety data sheet)

Tacrolimus PDE calculation

- Min therapeutic dose 3.75 mg/d
- PDE calculated from preclinical animal data
 - the reprotox study in rabbits is considered as the most relevant tox study here
 - rabbit reprotox LOAEL 0.32 mg/kg/d (Toxnet HSDB)

• $PDE = \frac{0.32 \frac{mg}{kg}/d}{2.5 x 10 x 1 x 10 x 10} = 0.13 \,\mu\text{g/kg/d or } 6.5 \,\mu\text{g/d for an adult}$

F1 = 2.5 for rabbit, F2 = 10 for interindividual variance, F3 = 1 for reprotox study covering full organogenesis, F4 = 10 teratogenic effects, F5 = 10 for LOAEL

Examples how to derive a HBEL - Low hazardous compound

Lithium carbonate has been produced as the previous product

- Lithium salts are use as antipsychotic drugs (mania, bipolar disorder recurrent unipolar depression)
- Recommended therapeutic doses 900 2400 mg/d of lithium carbonate
- Major target organs for toxicity under therapy are kidney and thyroid
- Full two generation reprotox-study (GLP) in rat publicly available [https://echa.europa.eu/registration-dossier/-/registered-dossier/15034/7/9/2]
 - NOAEL determined with 45 mg/kg/d
- OEL 2.34 mg/m³ (SER Netherlands)
- Data justify lithium corbonate to considered as low hazardous compound

Lithium data sources

- Toxnet
 - No relevant animal data available
- SmPC at [www.medicines.org.uk]
 - No relevant preclinical data
- ECHA registered substances database
 - Full mixed dossier with a GLP 2 generation reprotox study [https://echa.europa.eu/registration-dossier/-/registered-dossier/15034/7/9/2]

Lithium carbonate PDE calculation

In this case the extensive human data available clearly require a safety assessment based on human data

- PDE (oral) calculated from human clinical data
 - recommended approach: use 1/3 of the lowest human daily dose

•
$$PDE = \frac{300 \, mg/d}{1 \, x \, 10 \, x \, 1 \, x \, 10} = 3 \, mg/d \, \text{or} \, 60 \, \mu g/kg/d$$

What would be the PDE derived from animal data

- PDE calculated from preclinical animal data
 - the reprotox study in rats is considered as the most (only) relevant tox study available
 - rat reprotox NOAEL 45 mg/kg/d (ECHA)

•
$$PDE = \frac{45 \frac{mg}{kg}/d}{5 x 10 x 1 x 1 x 2 (x10)} = 450 (45) \, \mu g/kg/d$$

F1 = 5 for rat, F2 = 10 for interindividual variance, F3 = 1 for reprotox study covering full organogenesis, F4 = 1, F5 = 2 for NOAEL

• Due to the limited animal data available an additional modifying factor of up to 10 for residual uncertainty may apply

HBEL using the 1/1000th approach

• 1/1000th of therapeutic lowest clinical dose

HBEL=
$$\frac{900 \ mg/d}{1000}$$
= 900 µg/d or 18 µg/kg/d

This approach would also ensure a conservative and protective setting of a HBEL

Conclusion and future needs

- The flexible approach dependent on product potency as outlined in the Q&A provides a pragmatic approach to ensure HBEL for cross-contaminants
- Need for full toxicological assessment for products of high concern (highly hazardous products)
 - the 1/1000th of the therapeutic dose may not ensure setting of HBEL for these products
- Flexible approach for not highly hazardous products
 - Full toxicological assessment or
 - 1/1000th of the therapeutic dose
 - Both methods are considered to be sufficient to ensure HBEL, however also pharmaceutical quality needs to be ensured
- Pragmatic approach to avoid full toxicological assessment when not needed for setting of HBEL

Thank you very much for your attention!

Contact

Federal Institute for Drugs and Medical Devices Licencing Division 2 Genetic and Reproductive Toxicology Kurt-Georg-Kiesinger-Allee 3 D-53175 Bonn

Contact person Dr. Roland Frötschl Roland.froetschl@bfarm.de www.bfarm.de Tel. +49 (0)228 99 307-3441 Fax +49 (0)228 99 307-5599

