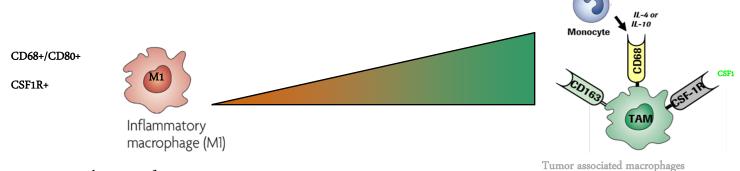


Shifting the MTD paradigm in Oncology

Kevin Smart and Georgina Meneses-Lorente

Clinical Pharmacology, Roche Products Ltd, Roche Innovation Centre, Welwyn, UK.



MabCSF-1R

Macrophages (M ϕ) are Polarized during Tumorigenesis

Tumors recruit $M\Phi$ and induce M2-subtype by secreting CSF-1 and immunosuppressive cytokines

Early stage of cancer:

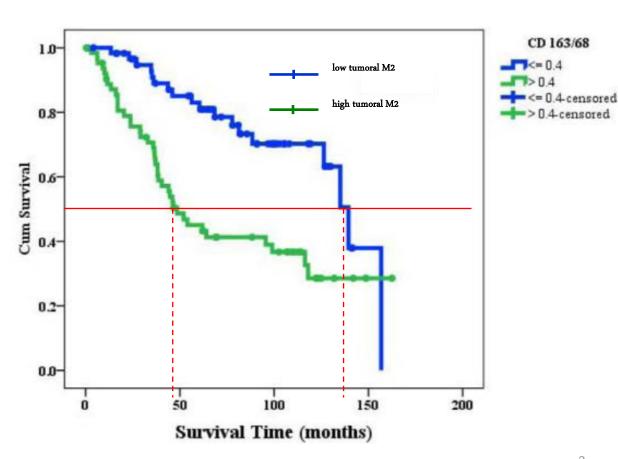
M1-MΦ subtype dominates

- Phagocytosis
- Antigen presenting
- Defense against pathogen

Invasive carcinoma:

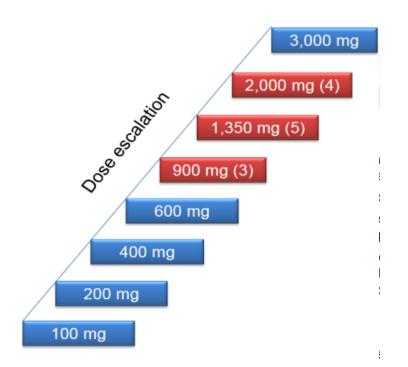
M2-MΦ subtype dominates

- Tissue repair
- Tissue remodeling
- Immunoregulation


M2 MΦ Correlation with Prognosis

- HER2+ Breast cancer ⁵
- Ovarian cancer⁴
- Pancreatic cancer³
- Glioma⁶
- Hepatocellular carcinoma⁷

Overall survival in breast cancer


MabCSF-1R: Clinical Ph1/Ph1b study design

Challenging the MTD paradigm in clinical oncology studies

Dose escalation study - Monotherapy & combination with paclitaxel

- 100 mg run-in dose, followed by biweekly (Q2W) therapeutic dosing strategy
 - 100 mg run in to characterise Target Mediated Drug Disposition (TMDD)
 - use TMDD to inform on optimal doses.

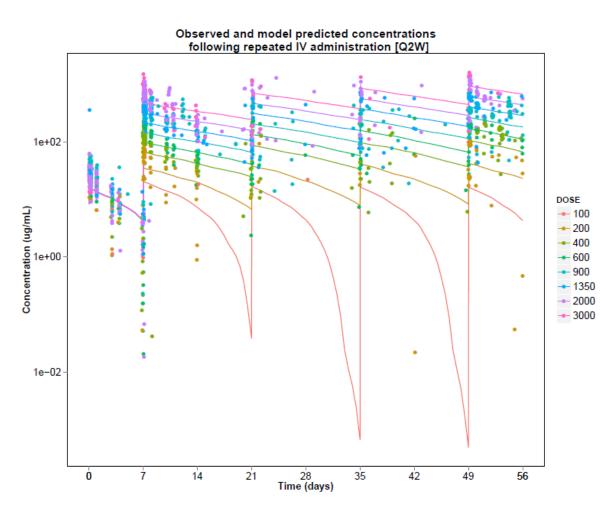
No SAE or Dose limiting toxicities reported

MTD not achieved!

Is such a high dose necessary?

Could biomarker & exposure data steer us towards an optimal dose?

MabCSF-1R: Clinical Ph1 study design

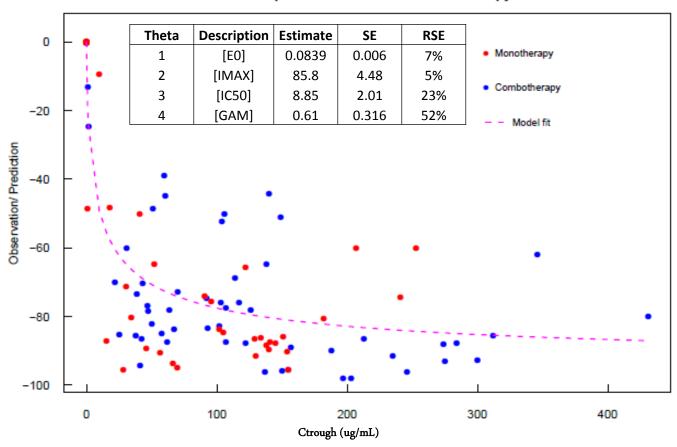


- Data existed from a number of investigational biomarkers:
 - Skin surrogate macrophages (pre-treatment and C2D1)
 - CSF1R +ve
 - CD163+ve
 - Circulating 'activated' monocytes (pre-cursor to macrophages)
 - Time course
 - Tumour Associated Macrophages (TAM)
 - Paired biopsy data
 - Pre-treatment
 - After 2 cycles of treatment (C3D1)
 - Pharmacokinetics
 - Time course

Pharmacokinetics

• 2 compartment PK model with saturable and non-saturable elimination (TMDD)

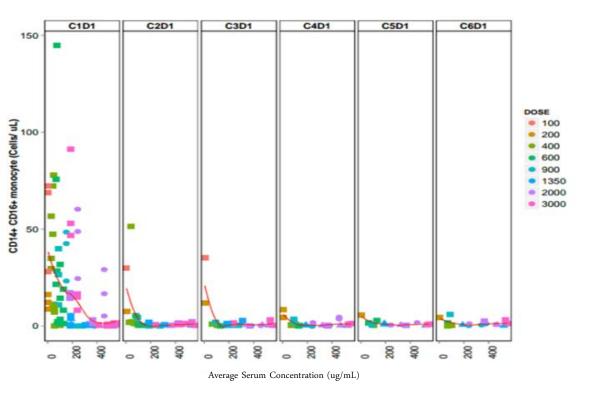
- Clear non-linearity during 100 mg run-in
- Above 900 mg Q2W, concentrations high enough to saturate TMDD
 - Linear PK


Parameter	Estimate	SE	RSE
[CL] (L/h)	0.0105	0.0006	6%
[VM] ((ug/mL)/h)	0.340	0.0241	7%
[KM] (ug/mL)	0.461	0.178	39%

Dose (mg)	t1/2 (h)
100	37
200	122
400	155
600	148
900	189
1350	193
2000	187
3000	190

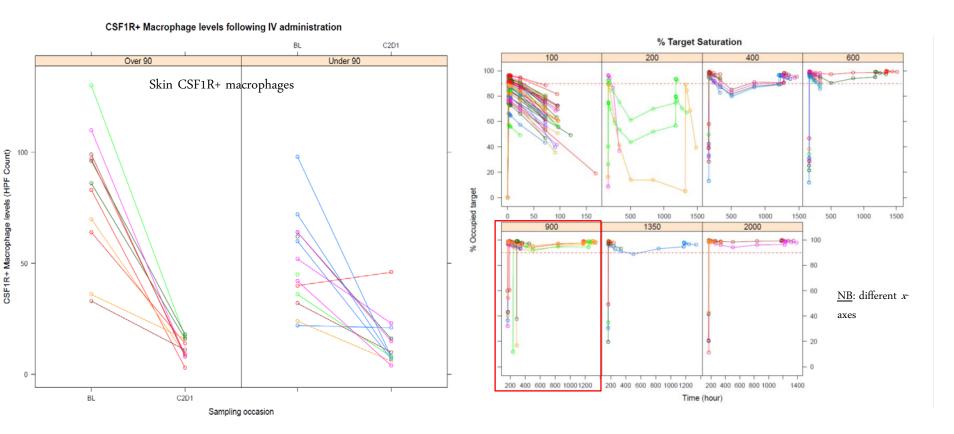
Skin surrogate macrophages

Change from baseline CD163+ macrophages with exposure in Mono and Combotherapy


- Exploration of reduction in skin macrophages (C2D1) v pre-dose drug level (Ctrough)
 - AUC and Cav were also used as independent variable

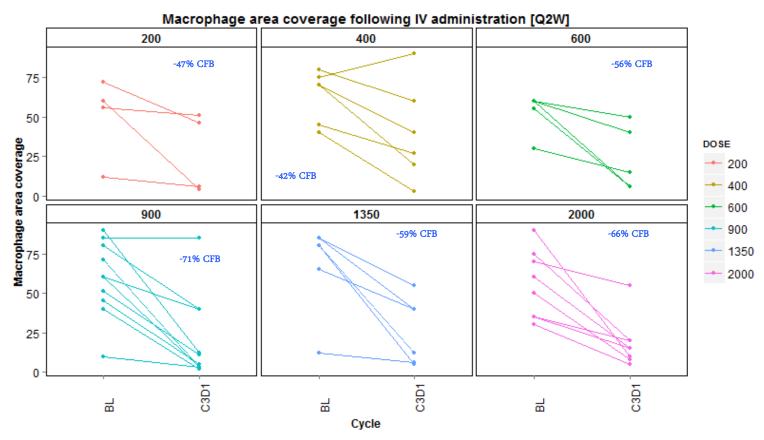
- Estimated IC90 is ~320 ug /mL
 - Lowest dose which affords cover is 900 mg Q2W

Circulating activated monocytes


- Marked reduction in activated monocytes with increasing average concentration, Ctrough or AUC.
- Depleted at beginning of the second cycle
 - No recovery at doses > 200mg
- Plateau appear to be reached at doses ≥ 400 mg Q2W

Explored relationship of reduction in monocytes with concentration, exposure and dose

Biomarker efficacy linked to PK

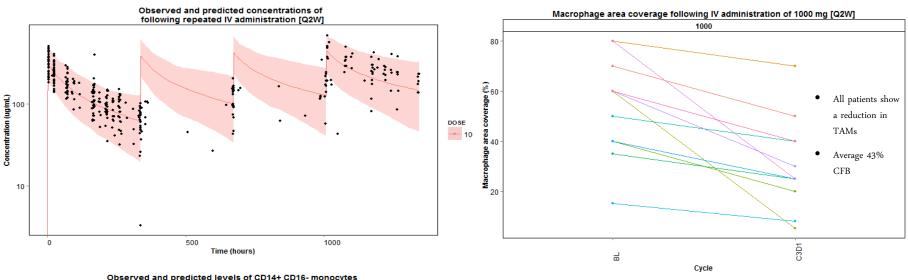

What level of saturation of TMDD component optimal for efficacy?

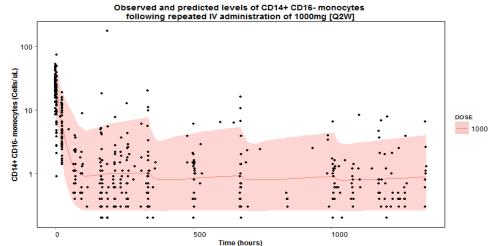
- Over 90% saturation, the reduction in macrophages and activated monocytes is close to maximal no further decrease with >95% saturation
- A dose of ~900 mg Q2W is needed to ensure adequate saturation levels throughout dose cycle

Tumor associated macrophages

- Overall, 38/40 patients (95%) showed a decrease in levels of TAM between pre-treatment and C3D1
 - Mean -56% CFB (range +20 -96%)
- No apparent relationship to dose, or to saturation of TMDD.
 - Timing of C3D1 sample.

MabCSF-1R: summary


- We employed a combination of modeling & simulation and pharmacology to show that the optimal dose of MabCSF-1R for efficacy was 3- to 4.5-fold lower than the proposed MTD.
- This was based upon:
 - Reduction in surrogate skin macrophage markers
 - Reduction in circulating activated monocytes
 - Reduction in tumour associated M2 macrophages
 - Saturation of target mediated drug disposition
 - All suggest maximal effect is observed with doses of ≥900 mg Q2W


- As a result, a dose of 1000 mg Q2W is now employed in the clinic
- This demonstrates a move away from the MTD paradigm in favour of a PKPD based approach to dose selection.

Was it successful?

Did the 1000 mg Q2W dose work?

Acknowledgements

- ullet Dominik Ruettinger Translational medicine leader
- Monika Baehner Project leader
- Michael Cannarile Biomarkers leader
- Carola Ries Oncology Discovery
- Antje-Christine Walz Preclinical M&S
- Randolph Christian Drug Safety
- Claudia Mueller Safety Science
- Alex Phipps, Nicolas Frey, Franziska Schaedeli-Stark Clinical Pharmacology.

Doing now what patients need next