Target Trial Emulation in a DARWIN EU® Vaccine Effectiveness study

Prof Dani Prieto-Alhambra Deputy Director DARWIN EU®

Research question

What is the effectiveness of HPV vaccination in the prevention of severe disease outcomes in women, including invasive cervical cancer and CIN2+ for the different licensed HPV vaccines in Europe (Spain, UK, Norway) ?

Main – Vaccine Effectiveness against:

- 1- Invasive cancer
- 2- CIN 2/3
- 3- Conisation

<u>Potential pitfall</u>: different % of vax according to outcome risk -> low baseline exchangeability?

Secondary - Comparative Effectiveness:

- 1- Between valency/brands
- 2- Between dose schedules

Estimand Framework (EF) & Target Trial Emulation (TTE)

EF	TTE	
Population	Elegibility Criteria	
Treatment conditions	Treatment Strategies	
	Assignment procedures	
Endpoints	Outcome	
	Follow-up period	
Handling of Intercurrent events	Casual contrast	
Summary measure	Analysis plan	
Statistical analysis plan		

EF / TTE: Population/Eligibility criteria

Population:

Women eligible for HPV vaccine/s

Females eligible (9 years or older - as per drug approval) any date after the launch of the HPV vaccine in the contributing data partners

National Schedules

UK Schedule			
Date	Brand	N doses before 15 yo	First dose
01 September 2008	Cervarix	3	12-13 yo
01 September 2012	Gardasil	3	12-13 yo
01 September 2014	Gardasil	2	12-13 yo
01 April 2018	Gardasil	2	12-13 yo
01 September 2019	Gardasil	2	12-13 yo
01 April 2022	Gardasil	2	12-13 yo
01 July 2022	Gardasil 9	2	12-13 yo
01 September 2023	Gardasil 9	1	12-13 yo
Catalonia schedule			
Date	Brand	N doses before 15 yo	First dose
01 September 2008	Gardasil	3	11-13 yo
01 September 2010	Cervarix /Gardasil in Barcelona (20%)	3	11-13 yo
01 September 2011	Gardasil / Some Cervarix surplus	3	11-13 yo
01 September 2014	Gardasil	2	11-13 yo
01 September 2017	Gardasil 9	2	11-13 yo
01 May 2018	Gardasil 9	2	11-13 yo
01 September 2022	Gardasil 9	2	11-13 yo
Norwegian schedule			
Date	Brand	N doses before 15 yo	First dose
01 September 2009	Cervarix	3	12-13 yo

EF / TTE: Population/Eligibility criteria

Decision 1 - to maximise baseline exchangeability: To restrict to those eligible for 'universal' vaccination programmes / campaigns

 Females eligible for the vaccination programme in each country (e.g. born on or after 1995-6), and in observation and alive in the database between 9 to 15 years old

EF / TTE: Population/Eligibility criteria (2)

Decision 2 - to maximise [conditional] exchangeability: -Match on database, year of birth, GP practice

-Match on propensity scores (conditional probability of vaccination based on baseline characteristics)

EF / TTE: Treatment conditions / strategies

Treatments :

Vaccinated with Gardasil/Silgard Vaccinated with Cervarix Vaccinated with Gardasil-9 Unvaccinated

TTE: Time zero and follow up

Start of follow up (time zero):

- -Vaccinated: The moment they receive the first dose of HPV vaccine (before age 15)
- -Unvaccinated: Moment matched pair receives the vaccine
- End of follow up:
- -Death
- -Loss to follow-up (migration, end of study)
 -Outcome

EF / TTE: Endpoints / Outcomes

- Endpoints / Outcomes at 5/10/15 years :
- Invasive cervical cancer
- CIN 2+
- Conisation

Potential pitfall: Differential screening in vaccinated vs unvax -> loss of exchangeability over time (survival bias) TTE : Causal contrast

'Per protocol'

Unvaccinated censored if they receive the vaccine

Vaccinated censored in further vaccination only for dose analyses

EF : Handling of intercurrent events

Treatment-related

-Unvaccinated: vaccination, dealt with a hypothetical strategy

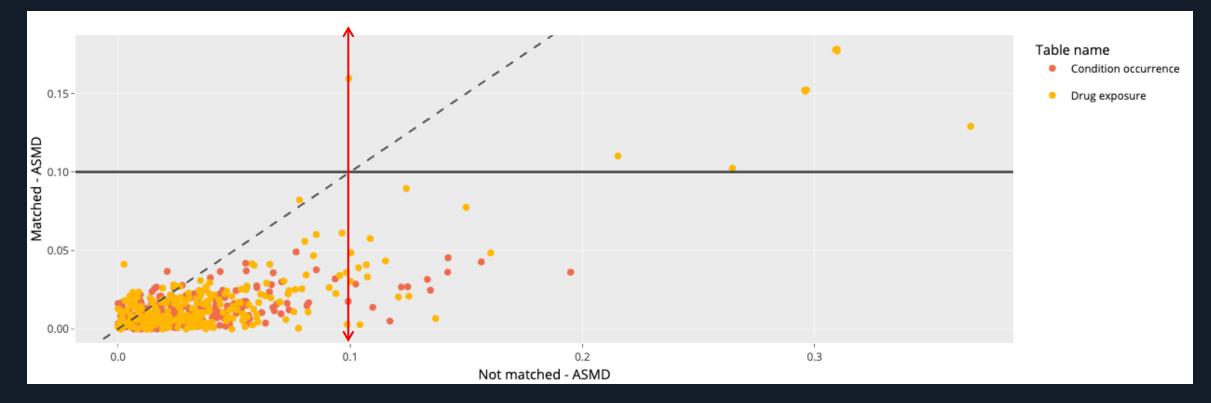
<u>-Vaccinated</u>: Incomplete dosing dealt with a treatment policy strategy

EF/TTE : Analysis plan

Matched cohort

Exact on year of birth, year of first dose and geographic region or GP practice

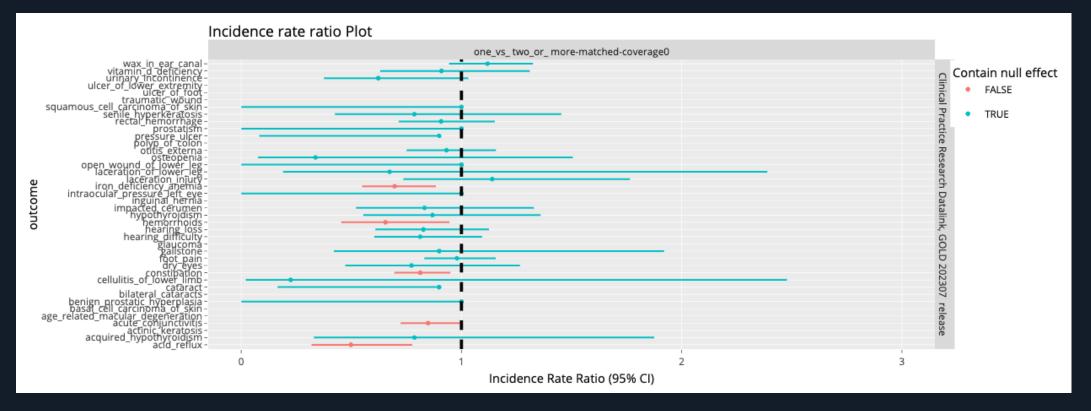
Further matching by nearest neighbour with PS


EF/TTE: Summary Measure

At 5, 10, 15 years:

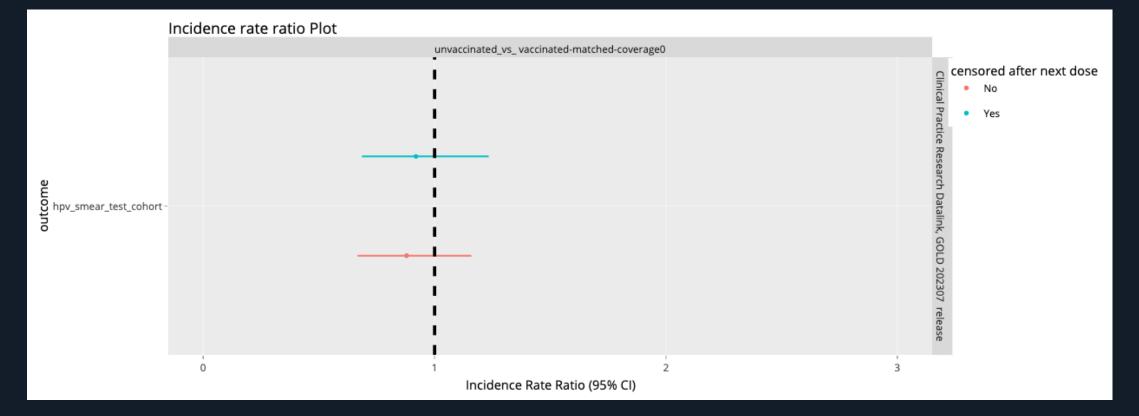
Incidence Rates and Incidence rate ratios Cumulative Rates and Risk Ratios

Time to event Hazard Ratios Diagnostic (1): Impact of PS matching on baseline conditional exchangeability: Vaccinated vs unvaccinated


Measurable imbalances reduced in before (X axis) vs after PS matching (Y axis)

Preliminary data. Confidential. Do not disseminate

Diagnostic (2): negative control outcomes to detect unobserved or residual confounding


Incidence Rate Ratio of NCOs ~15y follow-up according to vaccination status in PS-matched cohorts

Preliminary data. Confidential. Do not disseminate

Diagnostic (3): potential loss of conditional exchangeability over time due to differential testing

Incidence Rate Ratio of smear tests during ~15y follow-up according to vaccination status in PS-matched cohorts

Preliminary data. Confidential. Do not disseminate

Both EF and TTE frameworks are useful and complementary to better specify analyses.

EF: Especially useful to focus the research question and how decisions, especially on intercurrent events, affect it.

TTE: Especially useful for better define timing decisions, more unique to observational research, like randomisation time vs ascertainment of treatment and start and end of follow-up times

Study design and analyses improved (conditional) exchangeability, at baseline and over time

Use of diagnostics to detect departures from causal inference assumptions