The use of Historical Control Data to Assess the Benefits of New Therapies: A Case Study of Blinatumomab versus Standard Therapy of Adults relapsed/refractory Acute Lymphoblastic Leukaemia

Maurille Feudjo Tepie

Director, Observational Research, Amgen Ltd

Joint EMA – EUROPABIO Workshop

London, 22nd, November 2016

Outline

Background

- Historical control group
 - Sources of data, analysis methods, results
- Conclusion/discussion
 - Challenges, lessons learned,

Background: ALL Disease

- Adult acute lymphoblastic leukemia (ALL):
 - Rare disease (~ 1-2/100,000 age-adjusted incidence rate among adults)
 - Large percentage of adult patients relapse after initial treatment
 - Very poor prognosis (1 year survival ~ 15% among relapsed/refractory (R/R) patients)
- Prognosis of R/R ALL is strongly impacted by:
 - Time to relapse (or duration of remission)
 - Number of previous relapses and salvage treatments
 - History of HSCT

Background: ALL Treatment Options

- No established standard treatment for R/R ALL patients
- HSCT, considered a potentially curative option, is generally not available for older patients (> 60 years)
- Palliative care often the only treatment option for many adult R/R ALL patients:
 - intolerability to aggressive chemotherapy
 - lack of curative intent if HSCT unavailable
- Promising results for blinatumomab reported in initial Phase II trial – high remission rates in R/R ALL population –

Background: Challenge for a Phase 3 RCT

- Rare disease recruitment, achieving sufficient sample size are challenging
- Unmet medical need poor disease prognosis
- Limited or no treatment options would be unethical to allocate patients to "standard of care"
- Clinicians unwilling to participate in these trials
- Other design challenges with clinical trials:
 - Subject retention
 - Cross-over
- **New therapy** initial promise, might offer hope
- Some control data better than no information To help put results into appropriate perspective/context

Potential Data Sources/ Data Availability that could help provide some context – Historical controls

- Several studies* reported data on clinical outcomes among adult patients with R/R ALL:
 - Appeared data were available and could be assembled into a larger study relatively quickly
- Summarizing the literature was limited because of significant variation on how data were reported:
 - Differences in treatment histories (e.g. # of prior salvage therapies)
 - Differences in patient subgroup categories: time to relapse, age etc.
- Need individual patients data

*Fielding et al Blood 2007; Gokbuget et al Blood 2012; O'Brien et al Cancer 2008; Oriol et al Haematologica 2010; Tavernier et al Leukemia 2007

Adult R/R ALL Historical Comparator Study: Study Schema

Analysis approach

- Direct comparison of endpoints
 - Overall
 - By subgroups
 - Weighting endpoints on key characteristics to the clinical trial population

• Propensity score analyses

Results: Complete Remission as Defined by the Study Group (CRsg)

Stratum	Age at Treatment	Prior lines of Treatment	n/N	Stratum % Observed	Stratum % Observed in Trial	CRsg Proportion (95% Cl)
1	<35	alloHSCT	14/48	6.9%	21.2%	0.29 (0.17, 0.44)
2	<35	In 1 st salvage	52/119	17.2%	5.3%	0.44 (0.35, 0.53)
3	<35	In 2 nd + salvage	27/150	21.6%	21.2%	0.18 (0.12, 0.25)
4	>=35	alloHSCT	11/41	5.9%	12.7%	0.27 (0.14, 0.43)
5	>=35	In 1 st salvage	57/187	27.0%	10.1%	0.30 (0.24, 0.38)
6	>=35	In 2 nd + salvage	25/149	21.5%	29.6%	0.17 (0.11, 0.24)
Weighted estimate for historical data						0.24 (0.20, 0.27)
Clinical trial data*						0.43 (0.36, 0.50) ¹
						0.33 (0.27, 0.41) ²

n = number of patients achieving CRsg, N = number of patients evaluated for CRsg

- Topp et al. Lancet Oncology 2015;16:57-66.
- 1. CR/CRh* 2. CR

Results: Median Overall Survival

	Age at	Prior lines of		Stratum %	Stratum % Observed in	Median OS
Stratum	Treatment	Treatment	N	Observed	Trial	(95% CI)
1	<35	alloHSCT	108	9.7%	21.2%	3.8 (2.9, 4.5)
2	<35	In 1 st salvage	258	23.2%	5.3%	5.7 (4.9, 6.3)
3	<35	In 2 nd + salvage	161	14.5%	21.2%	2.9 (2.3, 4.0)
4	>=35	alloHSCT	79	7.1%	12.7%	4.0 (2.8, 4.7)
5	>=35	In 1 st salvage	341	30.7%	10.1%	3.7 (3.2, 4.4)
6	>=35	In 2 nd + salvage	165	14.8%	29.6%	2.2 (1.7, 2.9)
Weighted estimate						33(28 36)
of historical data						5.5 (2.0, 5.0)
Clinical trial data*						6.1 (4.2, 7.5)

* Topp et al. Lancet Oncology 2015;16:57-66.

Forest Plot of Odds Ratios for Analyses of Complete Remission

IPTW=Inverse probability of treatment weighting. sIPTW=Stabilized inverse probability of treatment weighting.

Strong evidence of higher odds of CR in the trial (treated) population compared to the 'control' population

Forest Plot of Hazard Ratios for Analyses of Overall Survival

IPTW=Inverse probability of treatment weighting. sIPTW=Stabilized inverse probability of treatment weighting.

Strong evidence of smaller hazard of death in the trial (treated) population compared to the 'control' population

In summary

- Faced with the challenge of an effective registrational phase 3 RCT, partly due to:
 - Rare disease, very poor prognosis, limited treatment options, clinician willingness to participate, etc...
- Systematically collected, carefully analyzed, historical individual R/R ALL patients data:
 - Showed strong and consistent benefit of treating R/R ALL patients with Blinatumomab compared to standard of care
- Evidence was deemed important to help accelerated approval of Blinatumomab for adults R/R ALL by the FDA
 - Among others, the robustness of the results and the importance of the effect size played key roles
 - Helped by the availability of good historical data and excellent collaboration between contributing investigators

In summary

- The TOWER study, a phase 3 randomized open label trial later confirmed these findings
 - An almost two-fold increased in median overall OS compared to SOC
- These results and their outcomes, further highlight the importance for all relevant stakeholders to continue to explore the potential role of the RWD in drug regulatory process.
 - Work was presented at a FDA symposium on how RWD can be used for faster regulatory approval
- In some situation, RWD can be used to enable faster delivery to the patients:
 - Considerable unmet medical need
 - New and very promising therapy
 - Clinicians unwilling to participate in these trials
 - Rare disease

Study Collaborators

- Nicola Gokbuget*, Dieter Hoelzer
 - University Hospital, Goethe University, Frankfurt, Germany
- Hagop Kantarjian, Susan O'Brien
 - University of Texas, Houston, Texas, United States
- Hervè Dombret
 - Hôpital Saint-Louis, Paris, France
- Jose-Maria Ribera
 - ICO-Hospital Germans Trias I Pujol, Jose Carreras Research Institute, Barcelona, Spain
- Adele K. Fielding
 - UCL Cancer Institute, London, United Kingdom
- Renato Bassan
 - UOC Ematologia, Ospedale dell'Angelo, Mestre-Venezia, Italy
- Sebastian Giebel
 - Maria Sklodowska Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland

- Anjali Advani
 - Cleveland Clinic, Cleveland, Ohio, United States
- Michael Doubek
 - University Hospital, Brno, Czech Republic
- Giovanni Martinelli
 - Policlinico S Orsola Istituto Seragnoli, Italy
- Martha Wadleigh
 - Dana Farber Cancer Institute, Boston, Massachusetts
- Norbert Ifrah
 - Center Hospitalier Universitaire, Angers, France
- Mireia Morgades
 - H. Germans Trias I Pujol, Barcelona, Spain
- Jacob M Rowe
 - Rambam Medical Center, Haifa, Israel
- Victoria Chia, Aaron Katz, Michael Kelsh, Julia Steiglmaier
 - Amgen

* Principal Investigator

Thank You!

Back UP

Particular Efforts to Minimize Bias

- At data collection stage requested sites to provide all patients with R/R ALL – rather than having sites apply selection criteria
- Inclusion/exclusion criteria applied centrally across all data sets
- Study sites reflected centers of excellence for treatment of ALL
- Weighting, stratified, and propensity score analyses to make endpoints more comparable
- Variety of sensitivity analyses conducted in order to address assumptions

Strength/Limitations of the approach

- Availability of and access to external control data
- Data definitions outcomes, exposure, covariates
- Study biases:
 - Selection
 - Confounding
 - Immortal Time
- Treatment differences: across time, geographic regions
- Heterogeneity

Propensity Score Analysis – Methods

- Propensity scores derived from logistic regression models considering available covariates
- Odds ratio (OR) for complete remission estimated from logistic regression models, using stabilized inverse probability treatment weighting (sIPTW)
- Hazard ratio (HR) for death estimated from Cox models, using inverse probability treatment weighting (IPTW)
- Sensitivity analysis conducted by:
 - Alternating weighting factors
 - Time period
 - Further model adjustments

Propensity Score Analysis

- Aim to create balance in baseline covariates between patients treated with blinatumomab and patients treated with standard of care (historical comparator)
- Covariates:
 - Age (years)
 - Sex (male, female)
 - Duration between most recent treatment and initial diagnosis
 - Region (USA, Europe)
 - Prior HSCT (yes, no)
 - Number of salvage therapies (1, 2, 3, and 4+)
 - Primary refractory and in/entering first salvage (yes, no)
 - Refractory to last salvage therapy (yes, no)

Covariate balance before and after propensity score (PS) adjustments

	Before	PS adjustme	nts	After PS adjustments			
	Historical comparator	Blinatumomab	p-value	Historical comparator	Blinatumomab	p-value	
Age, Mean (SD)	38 (14)	41 (17)	0.0018	38 (14)	36 (16)	0.35	
Female, %	44%	37%	0.09	44%	38%	0.48	
Duration since initial diagnosis in months, mean (SD)	11 (12)	24 (23)	<0.0001	14 (17)	17 (17)	0.34	
Region – Europe, %	83%	50%	<0.0001	77%	77%	0.93	
Prior alloHSCT, %	21%	34%	0.0003	23%	21%	0.61	
Number of salvage therapies, mean (SD)	1.5 (0.8)	2.3 (1.0)	<0.0001	1.6 (0.9)	1.7 (0.9)	0.96	
Primary refractory, %	6%	2%	0.0395	5%	11%	0.41	
Refractory to last salvage, %	21%	52%	<0.0001	27%	25%	0.75	

Particular Efforts to Minimize Bias

- At data collection stage requested sites to provide all patients with R/R ALL – rather than having sites apply selection criteria
- Inclusion/exclusion criteria applied centrally across all data sets
- Study sites reflected centers of excellence for treatment of ALL
- Weighting, stratified, and propensity score analyses to make endpoints more comparable
- Variety of sensitivity analyses conducted in order to address assumptions

