Use of quantitative tools for study planning purposes and study design optimisation

Valeria Gigante AIFA - Italian Medicines Agency EMA MSWG 12.06.2016

AIA

Agenzia Italiana del Farmaco

Public Declaration of transparency/interests*

The view and opinions expressed are those of the individual presenter and should not be attributed to AIFA or EMA

Interests in pharmaceutical industry	NO	Current	From 0 to 3 previous years	Over 3 preavious years			
DIRECT INTERESTS:							
1.1 Employment with a company: pharmaceutical company in an executive role	Х			mandatory			
1.2 Employment with a company: in a lead role in the development of a medicinal product	х			mandatory			
1.3 Employment with a company: other activities	Х			optional			
2. Consultancy for a company	Х			optional			
3. Strategic advisory role for a company	Х			optional			
4. Financial interests	Х			optional			
5. Ownership of a patent	Х			optional			
INDIRECT INTERESTS:							
6. Principal investigator	Х			optional			
7. Investigator	Х			optional			
8. Grant or other funding	Х			optional			
9. Family members interests	Х			optional			

*Valeria Gigante, in accordance with the Conflict of Interest Regulations approved by AIFA Board of Directors (25.03.2015) and published on the Official Journal of 15.05.2015 according to EMA policy /626261/2014 on the handling of the conflicts of interest for scientific committee members and experts. N.B. I am not receiving any compensation.

Agenzia Italiana del Farmaco

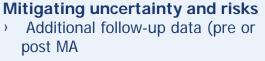
OUTLINE

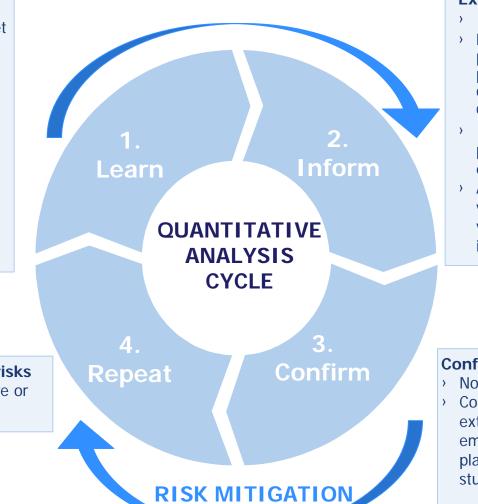
- M&S within the EU extrapolation framework
- Opportunity to optimize a pediatric development
- M&S can help to address PAH uncertainties
- Case study 1: sildenafil
- Case study 2: bosentan
- Conclusion

ROLE OF M&S WITHIN THE EMA EXTRAPOLATION FRAMEWORK

According to the model complexity, quality of data, previous knowledge of a compound, quantitative tools of analysis can be used to support an extrapolation approach in EU on three dimensions (3Rs)*:

- 1. Refine Clinical Trials
- 2. Reduce Clinical Trials
- 3. Replace Clinical Trials




EMA EXTRAPOLATION FRAMEWORK

Extrapolation concept

- Definition extrapolation target and scenarios
- Systematic synthesis of existing data
- Quantitative predictions on the degree of similarity between source and target population in 1) medicine disposition and effects, 2) disease progression, 3) clinical response
- Quantification of confidence in prediction

Extrapolation plan

- Identify gaps in knowledge
- Plan optimized studies in target population in accordance with predicted degree of similarity defined in the extrapolation concept
- Identify follow-up measures to produce data required by the extrapolation concept
- Assess impact assumptions violation/worst case scenarios via risk minimisation measures in the RMP

Confirmation & extrapolation

- No extrapolation vs extrapolation
- Confirmation or adaptation of the extrapolation concept by relevant emerging data using M&S in the planning and analysis of pediatric studies

BENEFITS OF M&S TO PEADIATRIC CTs

1. STUDY OPTIMIZATION TOOL

- Bridge the available knowledge (PK, PK/PD, response to treatment..)
- Guide clinical trial design
 - sample sizes, choice of trial design
 - dose optimization
 - sampling schemes
 - sensitivity of endpoints/appropriate times for measuring endpoints
 - avoid unnecessary studies
- 2. DATA ANALYSIS TOOL

Agenzia Italiana del Farmaci

- Integrate and analyse of sparse and unbalanced data
- Detect variability in the clinical outcome
- Identify covariates affecting exposure

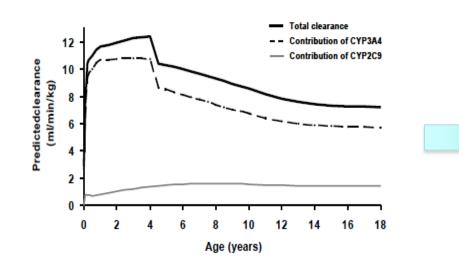
M&S CAN ADDRESSES PAH GAPS

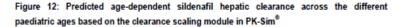
PAEDIATRIC INTRINSIC OR EXTRINSIC FACTORS	SOLUTION	
Developmental growth	РВРК	
Metabolism	РВРК	
DDIs in children	РВРК	
Comorbidities	РоРРК	
Weight/age/sex	PoPPK, PBPK	
Disease progression Pathophysiology	Health data, including registry data	
МоА	Network disease model /causal cohesive genotype-pheneotype models	

POTENTIAL ISSUE	SOLUTION	
Dose	PoPPK, PBPK, DER	
Study designs	Clinical trial simulation/ <i>in silico</i> trials	
Efficacy, extrapolation	Future disease models	
Adverse events	Future disease models	


PEADIATRIC PAH TREATMENTS IN EU

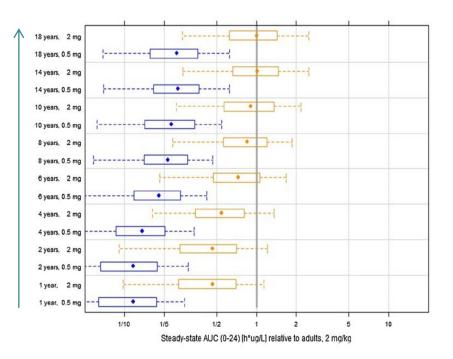
Medicine Name	Active Substance	Peadiatric Indication	Orphan	Pediatric Formulation
Adcirca	tadalafil	no	no	no
Adempas	riociguat	no	yes	no
Opsumit	macitentan	no	yes	no
Revatio	sildenafil	yes in 4.1 children >1 year (E&S data)	no	powder for oral suspension
Tracleer	bosentan	dose recom. in 4.2 children >1 year (PK data)	no	dispersible tablets
Uptravi	selexipag	no	no	no
Volibris	ambrisentan	no	yes	no

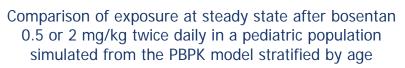


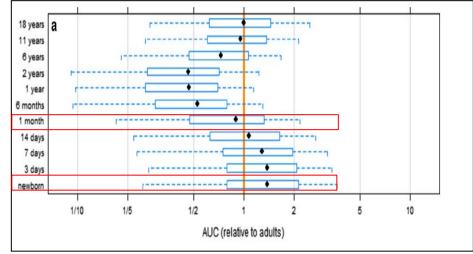

CASE STUDY: SILDENAFIL

Sildenafil clearance

Accounting for Growth and Maturation in a Paediatric PBPK Model


L. Hsien, 2010


Agenzia Italiana del Farmaco


Fig. 4. Simulated mean (solid lines) and 95% predictive interval values (dashed lines) of sildenafil plasma concentration over time for three representative subjects using both baseline and time-based changing physiology in the p-PBPK model. Filled circles are the observations from each subject as reported in Mukherjee et al. 2009

CASE STUDY: BOSENTAN

Agenzia Italiana del Farmaco

a) Age-dependence of AUC 0-inf

J. Zisowsky et al., 2017

CONCLUSION

- Safety should be investigated in the target population to confirm estimates and detect unforeseen age-specific AEs
- What endpoint allow a comparison between adult and children? And in children less than 2 years?
- How *similar* is enough?
- Interdisciplinary effort

Agenzia Italiana del Farmaco Al/FA Valeria Gigante v.gigante@aifa.gov.it 2 @ValeriaGigante1