What endpoints should be used in clinical trials of HAP and VAP?

Jean Chastre, MD Service de Réanimation Médicale Hôpital Pitié-Salpêtrière, AP-HP, Paris, France Université Pierre et Marie Curie, Paris 6, France www.reamedpitie.com

What endpoints should be used in clinical trials of HAP and VAP?

Competing interests:

Dr. Chastre has received speaker honoraria and/or consulting fees from Nektar-Bayer, Pfizer, Kalobios-Sanofi-Aventis, Johnson & Johnson, Janssen-Cilag, Astellas, Kenta, and Brahms.

Outline:

- 1. What should be the primary efficacy variable?
- 2. Which secondary endpoints?
- 3. How to define clinical success (failure) at TOC?

EXECUTIVE SUMMARY SUPPLEMENT ARTICLE

Workshop on Clinical Trials of Antibacterial Agents for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia

lohn G. Bartlett,¹ Philip S. Barie,² Michael S. Niederman,³ and Richard G. Wunderink⁴

Johns Hopkins University School of Medicine, Baltimore, Maryland; ²Division of Critical Care and Trauma, Department of Surgery, Cornell University, Cornell, and Department of Medicine Winthrop-University Hospital, SUNY at Stony Brook, Stony Brook, New York; and ⁴Feinberg School of Medicine, Northwestern University, thicago, Illinois

SUPPLEMENT ARTICLE POSITION PAPER

Recommended Design Features of Future Clinical Trials of Antibacterial Agents for Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia

Brad Spellberg^{1,2} and George Talbot,³ for the Infectious Diseases Society of America, American College of Chest Physicians, American Thoracic Society, and Society of Critical Care Medicine

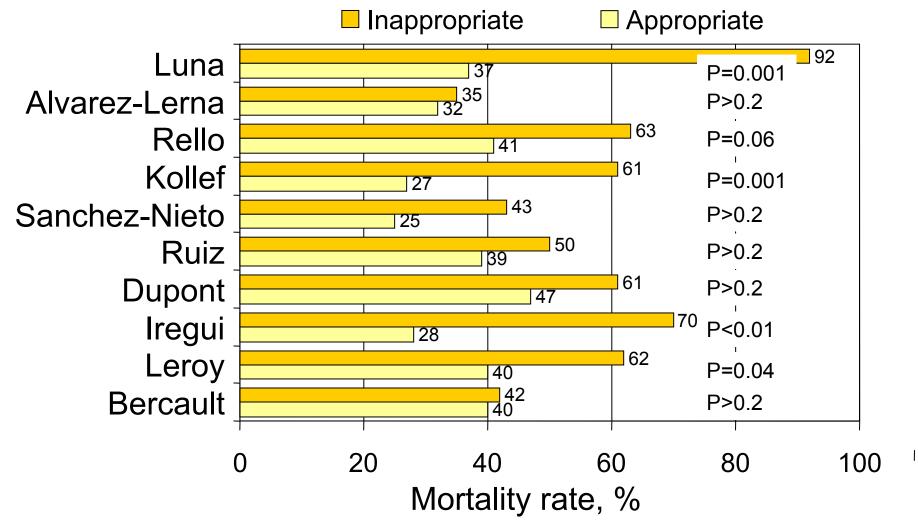
¹Division of General Internal Medicine, Los Angeles Biomedical Research Institute at Harbor–University of California Los Angeles (UCLA) Medical Center, and ²David Geffen School of Medicine at UCLA, Los Angeles, and ³Talbot Advisors, Wayne, Pennsylvania

1 August 2010 Volume 51 Number 3

Clinical Infectious Diseases

Guidance for Industry Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia: Developing Drugs for Treatment

f


Additional copies are available from:

Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 51, rm. 2201 Silver Spring, MD 20993-0002 Tel: 301-796-3400; Fax: 301-847-8714; E-mail: druginfo@fda.hhs.gov http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

What should be the primary efficacy variable?

- Most previous randomized, comparatorcontrolled trials in HAP/VAP have used
 "Clinical cure rate" at TOC as primary endpoint.
- Definition of clinical cure was frequently investigator-based and rather loose, based on subjective criteria:
 - Complete resolution of all signs and symptoms
 - Improvement or lack of progression of all abnormalities on x-ray by the 7 to 21 d TOC visit.

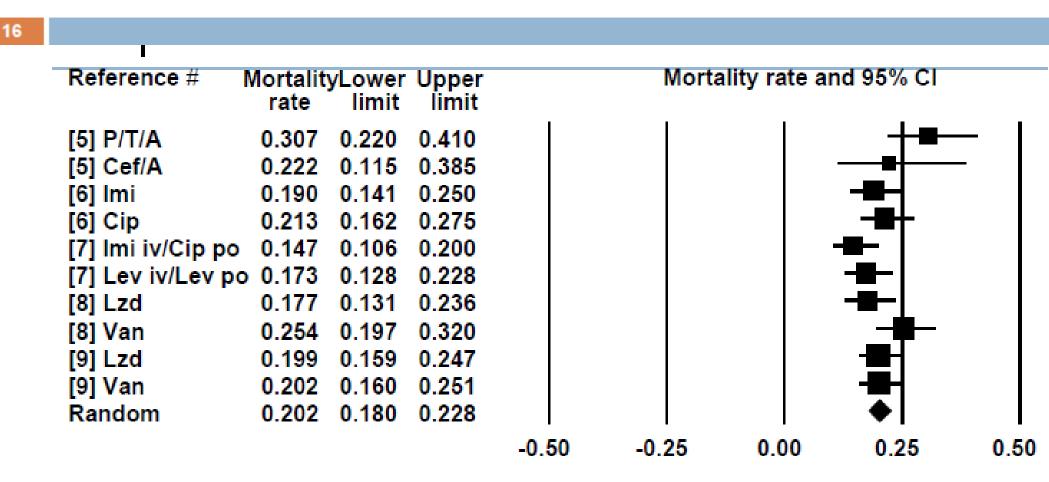
Mortality Associated with Initial Inappropriate Therapy in Patients with VAP

"PLACEBO" ALL-CAUSE MORTALITY RATE

Relevant data sources

- No placebo studies
- No dose-ranging studies
- Two retrospective studies of hospitalized patients with P. aeruginosa pneumonia that included patients left untreated
- 12 non-randomized, observational cohort studies that assessed all-cause mortality in relation to the adequacy of the initial antibacterial treatment

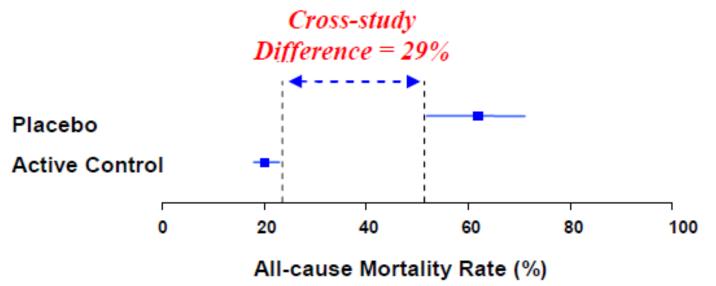
"PLACEBO" ALL-CAUSE MORTALITY RATE


30	<u>Study</u>	Statistic	cs for ea	ch study	/	<u>Mortality</u>	<u>Iortality rate and 95% C</u> I		
		Mortality rate	/ Lower limit	Upper limit					
	А	0.917	0.587	0.988				-	
	В	0.608	0.469	0.731					
	С	0.635	0.497	0.753				⊢∎	-
	D	0.467	0.241	0.707				— 	
	E	0.697	0.523	0.829					⊢∣
	F	0.692	0.409	0.880				∎	⊢
	G	0.816	0.683	0.902				-	╉│
	Н	0.507	0.391	0.623				-	
	1	0.519	0.336	0.696					
	J	0.615	0.421	0.779				_+∎-	-
	K	0.455	0.203	0.732			- I -		.
	L	0.349	0.276	0.430					
	Random	0.597	0.493	0.692				•	
					-1.00	-0.50	0.00	0.50	1.00
	.		, ,		0000	Mortality Rate			

ACTIVE CONTROL ALL-CAUSE MORTALITY RATE

Relevant data sources

- No placebo-controlled studies
- 9 randomized, prospective, comparator-controlled clinical efficacy studies involving the following drugs:
 - Piperacillin/tazobactam
 - Imipenem
 - Ceftazidime
 - Levofloxacin
 - Ciprofloxacin
 - Vancomycin
 - Linezolid


ACTIVE CONTROL ALL-CAUSE MORTALITY RATE

AC all-cause mortality rate estimate: 20% (18%, 23%)

DETERMINATION OF M1

- 17
 - M1 = treatment effect of Active Control (AC) over "placebo"
 - Cross-study difference in all-cause mortality rates between AC and "placebo" = 29%:
 - based on comparison of 95% Cls, where the lower bound of the 95% Cl for "placebo" was 52% and the upper bound of the 95% Cl for AC was 23%

What should be the primary efficacy variable for HAP/VAP?

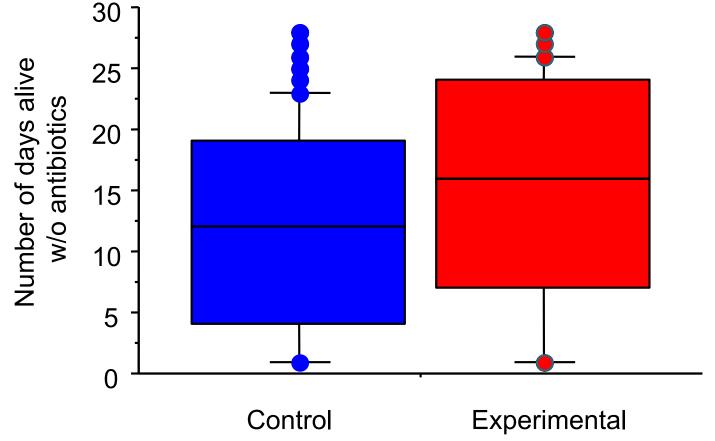
- Clinical trials should be designed to demonstrate a treatment effect of the new antibacterial agent at least noninferior to available comparators, using all-cause mortality within 28 d after randomization as primary endpoint (safety margin ≤10%).
- Trials should be **randomized**, **double-blind**, and active **comparator-controlled**.
- Trial population should include patients who are sufficiently ill (28-day predicted mortality ≥20%).
- Primary analysis population should be patients with a **microbiologically confirmed** bacterial etiology.

Secondary Endpoints

• Clinical response at TOC

- All cause mortality rate at days 14
- Number of MV-free days at days 28
- Number of antibiotics-free days at days 28
- CPIS and PCT changes from Day 1 to TOC
- Clinical relapse rates at Day 28
- Clinical and microbiological response by baseline isolate
- Safety and tolerability

Epidemiology and outcomes of ventilator-associated pneumonia in a large US database


Rello J, et al Chest 2002;122:2115.

Variable	With VAP	Without VAP	Significance
Mortality	30.4	30.6	N.S.
Duration of MV	14.3±15.5	4.7±7.0	P<0.001
ICU LOS	11.7±11.0	5.6±6.1	P<0.001
Hospital LOS	25.5±22.8	14.0±14.6	P<0.001
Hospital charges	104,983±91,080	63,698±75,030	P<0.001

Numbers of days alive without antibiotics at days 28

Bouadma et al. Lancet 2010;375:463-74

Absolute difference: 2.7 days [95% CI, 1.4–4.1] Relative reduction in antibiotic exposure: 23%

How to better define clinical success (failure) at TOC?

- All patients fulfilling <u>at least one</u> of the following conditions should be classified as a clinical failure:
 - 1. Rise in CPIS by at least 2 points on Day 3
 - 2. Failure of the CPIS to drop by at least 2 points on Day 10
 - 3. Continuation of antibiotics after Day 10
 - 4. Restarting antibiotics before the TOC visit; **OR**
 - 5. The patient **died** before the TOC visit

How to better define clinical **success** at TOC?

- A patient should meet all 3 conditions to be classified as "Clinical success":
 - 1. The patient **never** reached any **failure criteria**
 - Improvement or lack of progression of chest x-ray abnormalities
 - Resolution towards normal of the CPIS components, including tracheal secretions (volume and purulence), temperature, blood leukocytes, oxygenation (PaO₂/FiO₂)

Trials in HAP/VAP Patients With Infection Caused by Multiresistant Microorganisms

- Noninferiority trials are NOT appropriate in this setting:
 - 1. noninferiority trial design assumes that the active-controlled drug has a known and reliable treatment effect.
 - 2. the use of the same control antibacterial drug in the comparator arm is not possible.