

WHO Medically Important Antimicrobial list

Previously known as the WHO Critically Important Antimicrobial List

PD Dr. Andreas Palzer

EMA/FVE webinar, 23 May 2024

Content

- Context and background
- Revision and development of the WHO MIA List
- Purpose and target audience
- Classification- Classes and groups -
- Methodology for the categorization
- Categorization
- > Uses and implementation activities of the MIA List
- Next steps

Background: The MIA List – a 19-year journey

> A ranking of medically important antimicrobials for risk management of AMR due to non-human use

WHO Advisory Group on CIA (AG CIA) for Human Medicine 2021-2024

Established in October 2021

Revision and

development

of the WHO

MIA List

- > 17 members from the six WHO Regions
- Includes members from human, animal, and aquaculture sectors
- Food and Agriculture of the United Nations (FAO), United Nations Environment Programme (UNEP), and World Organisation for Animal Health (WOAH) representatives

Development of the WHO MIA list

- Review of the 6th Revision, background, purpose, and text
- > Three working groups (WG) have been established
 - WG1: Review of national and regional CIA lists
 - WG2: Review of Macrolides and other classes of antimicrobials
 - WG3: Review of the prioritization factors
- Public discussion July 2023
- Publication in February 2024

WHO Advisory Group on Critically Important Antimicrobials for **Human Medicine**

Professor Bruno Gonzalez-Zorn

Dr Catrin Moore

Dr Gérard Moulin

Professor Iddya Karunasagar ization

Professor Hosam Mamoon Zowawi

Dr Andreas Palzer

Dr Mohammad Issack

Professor Motoyuki Sugai

Professor Fatma Amer

Dr Junxia Song,FAO

Professor Olga Perovic

Dr Kushlani Jayatilleke

Professor Peter Collignon

Dr Ana Luisa Mateus, WOAH

Dr Ruby Singh

Purpose and target audience

Purpose:

- to ensure that all antimicrobials, especially medically important antimicrobials, are used prudently in all sectors
- to help regulators and stakeholders know which antimicrobials used in animals present higher risk to humans

Target audience:

- National Regulators and policymakers
- Veterinarians, veterinary paraprofessionals, aquatic animal/plant/crop health professionals, practicing physicians and prescribers of antimicrobials
- National AMR steering or coordinating committees
- Food-animal producers; institutional food purchasers; food companies

WHO Medically Important Antimicrobials List

A risk management tool for mitigating antimicrobial resistance due to non-human use

Previously known as the WHO Critically Important Antimicrobial List for Human Medicine

WHO MIA List: Classes, groups and categorization of Antimicrobials

- > All classes of antimicrobials were analyzed and included in one of the three groups
- Antimicrobial classes were evaluated based on their current authorization status, in humans, both in humans and animals, and only in animals.
- > The categorization is based on resistance mechanisms. The most common resistance mechanism affects all agents in a particular class of antimicrobials.
- > Some exceptions are considered:
 - > 1st and 2nd generation cephalosporins, combination with an inhibitor (e.g., beta-lactam, beta-lactamase inhibitor)
 - > Presence of different resistance mechanisms compared to other members within the class/subclass

Antimicrobials CLASS/agent		Resistance	
Humans	Animals	mechanism	
QUINOLONES		Modification of target	
Ciprofloxacin	Enrofloxacin	site	
CEPHALOSPORINS		Enzimatic	
Ceftriaxone	Ceftiofur	(betalactamase)	
AMPHENICOLS		Modification of target	
Chloramphenicol	Florfenicol	site	

Authorization status

- Antimicrobial groups were evaluated based on their **current authorization status**.
 - > Antimicrobial classes were considered authorized for human and/or non-human use if any member of the drug class was authorized for use in any country.
- Antimicrobial classes that are only **authorized for topical use were not considered** unless they are frequently used to treat multidrug-resistant pathogens in humans.

Best practices statements:

- Any **new antimicrobial class** that is authorized only in humans will automatically be placed in the authorized for use in humans-only category.
- For **implementation purposes**, drugs within **classes in the group authorized for use in humans only** should not be authorized in the future for use in food-producing animals, crops, or plants.

Groups and categories classification

Group of authorized only in humans

Drug class/subclass authorized only in humans

- Mainly newer antimicrobials that are very important for the treatment of serious MDR infections; several are considered last resort or sole therapy
- > Should be considered by default as **most critical and with the highest AMR implications** (at a minimum, similar to HPCIA)
- > Should not be authorized in the future for use in food-producing animals, crops, or plants

Group of authorized in humans & animals

- Analysed according to two criterion based on resistance mechanisms
- Critically important classes further evaluated to identify those of Highest Priority

Example: Fluoroquinolones

➤ Used in humans (ciprofloxacin) and animals (enrofloxacin)

World Health Organization

Antimicrobial classes and agents: new classification

Class/agent of antimicrobials	Change	WHO CIA List 2018	WHO MIA List 2024
Ketolides	Separated from macrolides	Macrolides/ketolides same class= HPCIA	Ketolides: Human only Macrolides: CIA
Fidaxomicin	Macrolide with different spectrum of activity	Included with Macrolides=HPCIA	Fidaxomicin: Human only
Eravacycline and Omadacycline	Tetracyclines with different spectrum of activity and RM	Included with Tetracyclines=HIA	Eravacycline and Omadacycline: Human only
Plazomicin	Aminoglycoside with different RM	Included with Aminoglycosides=CIA	Plazomicin: Human only
Macrolides	Reclassified from HPCIA to CIA	Macrolides=HPCIA	Macrolides=CIA
Aminopenicillins	Reclassified from CIA to HIA	Aminopenicillins=CIA	Aminopenicillins=HIA
Phosphonic acid derivatives	Reclassified from CIA to HPCIA	Phosphonic acid derivatives=CIA	Phosphonic acid derivatives=HPCIA
Nitroimidazoles	Reclassified from IA to HIA	Nitroimidazoles= IA	Nitroimidazoles= HIA

Highest and Critically Important Antimicrobials: Categorization 2024

Highest Priority Critically Important Antimicrobials –HPCIA-				
WHO CIA 6 th Revision 2018	WHO MIA List 2024			
Cephalosporins (3rd, 4th generation)				
Quinolones/fluoroquinolones				
Polymyxins				
Macrolides	Phosphonic acid derivatives			
Glycopeptides				
Critically Important Antimicrobials –CIA-				
Aminoglycosides				
Ansamycins				
Other classes moved to "authorized for use in human	Macrolides			
only"				

Intended uses of the WHO MIA List

> Enhanced regulations and optimized use of antimicrobials at National and Regional levels:

- > To prioritize risk management strategies for MIA to preserve their effectiveness
- > To use in conjunction with Codex AMR texts
- To develop treatment guidelines in non-human sectors in conjunction with existing international guidelines such as the WOAH List of antimicrobials of veterinary importance
- > To develop national and regional policies to support the responsible and prudent use of MIA
- > To guide approaches to reduce or restrict the use of certain antimicrobials in non-human sectors
- To assist efforts to eliminate the use of MIA for non-veterinary medical purposes (Growth promotion)

Intended uses of the WHO MIA List - 2 -

> Surveillance, monitoring and evaluation:

- As part of a One Health approach, ensuring MIA are in AMR and AMU monitoring/surveillance programs (Quadripartite Guidance on Integrated Surveillance of AMR)
- Use in conjunction with Codex Guidelines on IS of FBAMR

> Strengthen risk management in non-human sectors

Developing risk management measures such as restricted use, labeling or extra-label use and making antimicrobial agents available by prescription only.

> Strengthen communication of risk

> Communicating risks to the public, prescribers, and users of antimicrobials in non-human sectors

- 1. The MIA List is an important component of the Global Action Plan on Antimicrobial Resistance
 - Supports risk management and containment of antimicrobial resistance due to non-human antimicrobial use
- 2. Support Member States in:
 - Developing national policies and guidance for risk management and responsible and prudent use of antimicrobials in all sectors
 - Improving integrated AMR/AMU monitoring/surveillance programs
 - Promote research activities and interventions
- 3. Multisectoral collaboration is key to implementing action to contain AMR at the national, regional, and global level

THANK YOU

Thank you to the Government of the Kingdom of Saudi Arabia