Recent Experience in Non-Clinical Assessment : Scientific Advice and Marketing Authorization Applications

Beatriz Silva Lima iMED, Lisbon University and Infarmed, Portugal CHMP, CAT, SAWP Member and SWP Chair **Expectations on Nonclinical Program**

At the time of filing MAA

- MOST Concerns Should Have Been Addressed and/or Solved/Considered for Risk Management
- Major NC Problems Should NOT exist!

• IN THE IDEAL DEVELOPMENT!

SINCE THE IDEAL DOES NOT EXIST ...

Concerns often Persist on eg.

- Carcinogenicity / genotoxicity
- Genotoxic Impurities
- Reproductive Toxicity
- Hepatotoxicity

However, Still Ard – Poor justification – Insufficient Kin

EXAMPLES FROM MAAs Case 1

- Carcinogencity Study:
- -Liver adenomas/carcinomas
- -Thyroid adenomas
- Additional findings
- -liver enzyme induction
- -liver adducts
- -changes inT3, T4, TSH inconsistent
- -genotoxicity : 1 test of ICH battery positive

Major Objection: Mechanism of tumorigenesis NOT clarified

Mechanism for Rodent Thyroid Tumorigenesis

Case 1

- Follow up (mechanistic) Studies Addressing
- -CYP vs T3/T4/TSH
- -CYP vs liver adducts
- -dose-effect relationships
- -comparison to positive control (phenobarbital)

Point Solved ! Could have been anticipated?

EXAMPLES FROM MAAs Case 2

- Genotoxicity: Genotoxic Impurity
- -antifungal drug
- -for life-threatening condition
- Genotoxic impurity identifed and required to be lowered/removed
 - Discussion on "acceptable" levels in case of impossibility to remove
 - Base on benefit/risk for target population

Follow Up:

Guideline on Limits of Genotoxic Impurities

EXAMPLES FROM MAAs Case 3

Reproductive Toxicity

- Therapy for erectile dysfunction
- Long half life
- Decreased spermatogenesis in dogs
- Altered epithelium of tubules seminiferous
- Severity dose- and time- dependent (low Safety Margin)
- Aspermia after chronic treatment
- Not observed in rodents
- Considered species-specific by the Applicant

Objection Raised: Mechanism related to MOA? Human relevance?

EXAMPLES FROM MAAs Case 3 (cont)

- Folow up: proposed mechanism
- Increased testicular blood flow
- Increased temperature
- Relevance for man could not be discarded

Information was included in the SPC

Further Developments:

- •Long term clinical trial conducted
- •Effect Not identified
- SPC updated

EXAMPLES FROM MAAs Case 4

- Cardiovascular Toxicity: Glitazones
- Oral Antidiabetic Drugs
- Agonists PPARγ
- Reducing factors of Insulin resistance
- Pioglitazone & Rosiglitazone
- NC Concerns identified: CV and Carcinogenesis

Case 4: Pioglitazone

Cardiovascular findings in Dogs and Rats:

- -Myocardial hypertrophy not reversible.
- -Dose-related mortality appearing related to heart failure/dysfunction.

Safety Margins < 4X based on animal / human exposure

Follow up NC studies:

Dog and Rats; normoglycaemic vs insulin-resistant

-increased plasma volume correlating with

- •induction of eccentric bi-ventricular cardiac hypertrophy,
- •pericardial and pleural effusion.
- -Cardiac hyperthrophy reduced by diuretics

Case 4: Rosiglitazone

Cardiovascular findings in Dogs and Rats:

• heart rate, cardiac output & stroke volume, with

•slight reductions in blood pressure and

•a significant reduction in total peripheral resistance,

concomitant with

increased heart weight

dependent on treatment duration, Not corr with ECG

no safety margin in dogs

plasma volume expansion and

+ erythrocyte parameters;

Adaptive Cardiac Hypertrophy

Glitazones and Cardiovascular Safety

- Home et al Rosiglitazone evaluated for cardiovascular outcomes--an interim analysis. NEJM 2007;357:28-38.
- 2. Nissen SE, Wolski K.: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. NEJM 2007;356:2457-2471.
- 3. Singh S et al : Long-term risk of cardiovascular events with rosiglitazone: meta-analysis. JAMA. 2007;298:1189-1195.
- 4. Lincoff et al.: Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA.2007;298:1180-1188.
- 5. Lipscombe et al : Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298:2634-2643.
- 6. Lago et al.: Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet. 2007;370:1129-1136.
- 7. Rosen CJ.: The rosiglitazone story--lessons from an FDA Advisory Committee meeting. NEJM 2007;357:844-846.
- 8. Drazen et al.: Rosiglitazone--continued uncertainty about safety. N Engl J Med. 2007;357:63-64.
- 9. Nathan DM.: Rosiglitazone and cardiotoxicity--weighing the evidence. N Engl J Med. 2007;357:64-66.
- 10. Psaty BM, Furberg CD: The record on rosiglitazone and the risk of myocardial infarction. N Engl J Med. 2007;357:67-69.
- 11. Psaty BM, Furberg CD: Rosiglitazone and cardiovascular risk. N Engl J Med. 2007;356:2522-2524

CHMP Conclusions After Re-Assessment

Rosiglitazone and Pioglitazone:

• Benefit/Risk for Type 2 Diabetes Still Positive

Rosiglitazone:

Warning Included in Prescribing Information

- "Should only be used in patients with ischaemic heart disease, after careful evaluation of each patient's individual risk"
- "The combination with insulin should only be used in exceptional cases and under close supervision".

EXAMPLES FROM SA and PA

Questions Asked

- Study Designs (eg advance therapies, pediatrics)
- Development Programs (eg orphan diseases)
- Need and timing for studies (eg carcinogenicity, reproductive toxicity),
- Studies for Comparability

EXAMPLES FROM SA and PA Case 5: Selective Receptor Antagonist

Presence of epitope (n
Level of homology (ani
Binding affinity
Discussion: Species Relevance
NOAEL in rats: ~18 x human exposure
NEL monkeys: ~44 X human exposure

Ki(nM) 0.66

- •Cellular Cascades
- •Tissue Distribution of e
- Pharmacological Resp

Potency

reprotox planned Human Monkey Rabbit Rat

2.5

31.7

78.6

Discussion: # H vs animal Ki not considered for SR calculations EXAMPLES FROM SA and PA Case 6: Authologus Stem Cell Therapy Nonclinical Program:

•PD

•Safety / Distribution

•Tumorigenicity In immunossupressed mice

•Using the Clinical (human) Product (cells)

SAWP Discussion:

- •Use of homologus cells should be considered
- •With inclusion of human candidate in (one) treated group
- •Studies duration to be adapted to the period of cell persistence

EXAMPLES FROM SA and PA

Case 7: Different Human vs Species Epitope

mAb Targeting One Epitope of Human Immune Cell Type

- different epitope in murine target cells with same function
- Similar cellular cascades driven by the two epitopes in mice and man respectively.

SAWP Discussion:

Strategy Proposed by the Applicant To uses the mAb against murine epitope in preclinical safety studies to evaluate potential PD-driven safety aspects.

SAWP: Strategy wellcomed and agreed.

Sumarising the "Problems"

New mechanisms of action

-to understand the mode of action (MOA)
-to pick up PD - related toxicological effects
-to consider/adapt the MOA in the species used

Human specific molecules (eg proteins, Abs, …)

-use homologue molecules in the animal species
-use animal models of the disease
-use administration schedules and doses mimicking the human situation

•New Therapy/Technology:(Ped/ Cells/Biotech/Nano) -use of adapted approaches

First Advice:

THINK!!

ticking boxes may be confortable but Is <u>NOT</u>

A cost/time effective approach

THANK YOU!