S2(R1)

Revision of the Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use

Peter Kasper – BfArM and S2(R1)EWP

Revision of ICH S2A + S2B = S2R1

- S2A: Specific Aspects of Regulatory Genotoxicity Tests (1995)
- S2B: A Standard Battery for Genotoxicity Testing (1997)
- S2(R1): Guidance on Genotoxicity Testing and Data Interpretation
 - ☐ First EWG meeting in October 2006

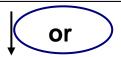
Reasons for Revision

- high rate of (false) positive findings in in vitro mammalian cell tests
- better consideration of new test methods
 - □ in vitro micronucleus test
 - □ in vivo models applicable to a variety of tissues
 - use of rat blood for micronucleus evaluation
- further improvement of animal welfare aspects ("Three Rs")

Summary of major revisions

- In vitro mammalian cell assay
 - □ Top concentration: reduced from 10 to 1 mM
 - Cytotoxicity limits: more clearly defined
 - Testing of precipitating concentrations: no longer required
- In vitro bacterial mutation assay no longer requires duplicate assay

Summary of major revisions


Follow-up strategy for in vitro positives

positive result in mammalian cell assay

(insufficient weight of evidence to indicate lack of relevance)

in vitro studies to provide mechanistic information

two appropriate in vivo assays,

usually with different tissues, and with supporting demonstration of exposure

Summary of major revisions

- Advice on choice of 2. in vivo genotoxicity endpoint (e.g. follow-up testing)
 - includes Comet assay, decrease emphasis on UDS assay
- Integration of genotoxicity endpoints into routine repeat dose toxicity studies
 - ☐ Stringent criteria defined for acceptability of top dose

Revised testing battery: 2 Options!

Current (S2B)	Revised S2		
	Option 1	Option 2	
Bacterial gene mutation (with repeat)	Bacterial gene mutation (no repeat)	Bacterial gene mutation (no repeat)	
In vitro mammalian cell test: Chromosome aberrations OR: mouse lymphoma assay	In vitro mammalian cell test: Chromosome aberrations OR: mouse lymphoma assay OR: micronucleus assay	NO in vitro assay in mammalian cells!	
→ 10 mM top conc→ > 50/80 % cyotoxicity	→ 1 mM top conc → at most 50/80 % cytotoxicity		
In vivo micronucleus test	In vivo micronucleus test	In vivo micronucleus test 2 nd in vivo endpoint/tissue	
(acute stand alone test)	(preferably integrated into rodent toxicity study)	(preferably integrated into rodent toxicity study)	

Dose acceptance criteria in general toxicity study for genotoxicity evaluation

- Maximum feasible dose
- Limit dose (1000 mg/kg for ≥ 14 days)
- Maximal possible exposure:
 - plateau/saturation in exposure
 - compound accumulation
- Top dose is ≥ 50% of top dose that would be used for acute administration

Benefits of revisions

- Incorporates accumulated knowledge specific to testing of pharmaceuticals
- Takes advantage of new technologies
- More options in the test battery
- Reduction in delays caused by dealing with "non-relevant" in vitro positives
- More efficient use of resources

Benefits of revisions: The 3 R's

- No concurrent positive controls in every in vivo assay
- Genotoxicity integrated into existing tox studies
- Incorporation of 2 genotoxicity assays in one study using the same animals
- Reduction in "non-relevant" in vitro
 results = less follow-up in vivo assays

Current status

- Discussion of regional consultation comments (Step 3) completed (June 08)
 - unsolved issue: feasibility of integration of endpoints into repeat dose toxicity study
 - □ industry collaborative study ongoing
- Step 4 Expert Document expected in June 2009 (Yokohama)

ICH S2 Expert Working Group plus observers

Health Authorities	<u>Industry</u>
--------------------	-----------------

MHLW	Makoto Hayashi (Chair), NIHS Masamitsu Honma, NIHS	JPMA	Akihiro Wakata, Astellas Pharma Shigeki Sawada, Eisai Co
EU	Peter Kasper, BfArM (D) J. W. van der Laan, RIVM (NL)	EFPIA	Hiroyasu Shimada, Daiichi Pharma Lutz Müller , F. Hoffmann-La Roche Veronique Thybaud, Sanofi-aventis
FDA	David Jacobson-Kram , CDER Tim Robison, CDER	PhRMA	Jerry D. Frantz , BMS Sheila M. Galloway, Merck

