ICH WORKSHOP: Viral Shedding Review of experience of shedding data for in vivo gene therapy

Teruhide YAMAGUCHI

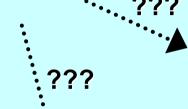
国立医薬品食品衛生研究所

National Institute of Health Sciences

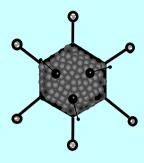
Viral Shedding

Gene Therapy Products

Viral Shedding into Patients'
Blood, Urine,
Feces, Sputum...



patients



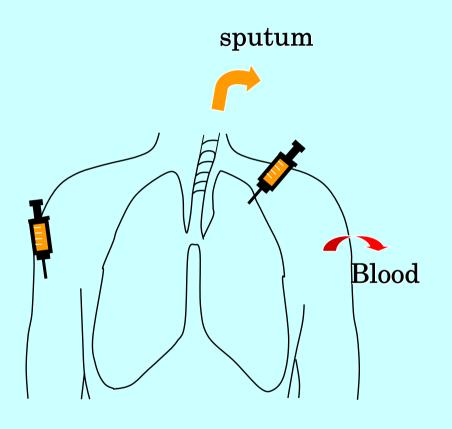
<into the environment >

Impact of Viral Shedding

- Viral shedding risk
 - Depends on biodistribution and the biological activity of each vector
 - Depends on the route of administration, dose and so on
- How to test for viral shedding
- Risk of vector/virus from patients to 3rd-party should be dependent on:
 - biological activity of virus shed
 - viability of virus in the environment
- Measures to minimize the risk of viral shedding

Should all Viral Vectors be treated in the same way in relation to shedding? Review of experience of shedding data for *in vivo* gene therapy

Adenovirus


Adeno-Associated virus

Impact of viral shedding is dependent on:

- Property of virus
 - Biodistribution
- Route of administration
 - Systemic or local administration
 - Ex vivo or not
- Dose
 - High or low
 - Single dose or repeat doses

Seneca Valley virus (Picornavirus)

How to detect viral shedding

- Detection of viral shedding
 - PCR
 - sensitive and accurate
 - no correlation of infectivity
 - Infectivity assay
 - less sensitive
 - New method
 - Infectivity PCR

Measures to minimize the risk of viral shedding

- Patients in quarantine
- Study design of viral shedding
 - How long viral shedding is detected
 - Follow-up